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Abstract

We develop a numerical method to design the acoustic
waveguide shape which has the filtering property to reduce
the amplitude of frequency response in a given target
bandwidth. The basic mathematical modeling is given by the
acoustic wave equation and the related Helmholtz equation,
and we compute complex resonant poles of the wave guide by
finite element method with Dirichlet-to-Neumann mapping
imposed on the domain boundary between bounded and
unbounded domains. We adopt the gradient method to design
the desired domain shape using the variational formula for
complex resonant eigenvalues with respect to the shape
modification of the domain.



@ Introduction

Y Two typical roles of wave propagation:

1) Energy transportation: sunlight, electric current, seismic
wave(ex. earthquake), water wave (ex. tsunami)

2) Information transmission: speech, music, electromagnetic
wave (ex. radar, light), underwater acoustic wave(ex. sonar)

Y Mathematical description of wave phenomena:
1) Wave equation (as partial differential equation)
2) Evolution equation (as operator theoretical formulation)

Y Three important elements in wave propagation:

1) Source or Input (Origin)

2) Filtering or Modulation (with respect to amplitude and phase)
3) Observation or Output (Influence)

Y Characteristic phenomena: Scattering and Resonance



@ Contents of talk in some details with key words

® Review some analytical and numerical methods for (time-
harmonic) wave propagation and radiation problem, i.e.
Helmholtz equation

® Application to Wave guide filtering problem for frequency
response with a typical application to voice generation

® Characterization of the wave guide via “Frequency response
function” defined as the peaks of the frequency response
function

® Shape designing of the wave guide via complex Resonance
eigenvalues given by the analytic continuation of the frequency
response function which determine desirable frequency
response

® Sensitivity analysis based on Variational formula of eigenvalue
plays an essential role



@ Numerical methods for wave propagation problem
% Mathematical formulation as PDE

_ 2 | a2y C sound
Wave equation: (o5 —c"Au(z,t) = f(z,t) In Q< R Velocity
Assuming time harmonicity of source term f and then u :

l u(z,t) = u(m)e_mj f(z,t) = f(:l:‘)e_m

Helmholtz equation: (—A — k?u(z) = f(z) inQ k=72
C
with outgoing radiation condition (due to causality):

In circular or spherical exterior cases, 1t i1s the Sommerfeld radiation
condition:

lim r(””/z{g—u(x)— iku(x)} =0
r

|X|—>00



% Review of the results for obstacle scattering problem

Consider the evolution equation with self-adjoint operator H in L% ()):
%u(t) = iHu(t), u(0) = uy in L*(Q), R™ 2 O, O :obstacle

1) Existence of wave operators: u(t) tends to uy(t) of unperturbed
system: %uo(t) = iHyuo(t), ug(0) = uyy in L#(R™).

The first question we may ask 1s the existence of wave operators Wy :
W,=s-— tligrn exp(—itH) J exp(itHy), J: L*(R™) - L*(Q)

2) Completeness of wave operators: Range(W., )=Range(W_).

3) Some properties of scattering operator S = W, * W_ related to
resonances for example.

4) Extending the results to the case of wave equation (see [3]).

References:
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[2] Kuroda, S. T., Scattering theory for differential operators, III; exterior problems, Spectral Theory and
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@ Reduction of the problem in a bounded domain
% Radiation problem for 2D circular exterior case:

u: sound pressure

) Incident
—Au—-k“u=0 nm Qp=QnNB; L) plane wave
ou | (——
—=0 on O (”}
on ,
8u '
M (k)u on Ig. ) |
8 I‘ ) Numerical results

by Dr. H.M. Nasir

where M = M (D?) called the Dirichlet-to-Neumann
mapping, is a function of D’ =-6°/86":

k & H(l)'(kR'n) in(6—
(M(k)u)(e)__—;oH“)(kR )j GRS

L HY(RAD?)
H“)(kR JD?)

Where H®(x;v):= H®"(x) 1s the Hankel function of the first kind of order one,
and’ denotes the derivative w. r. t. X.

Uu(R,0)



% Radiation problem for 2D cylindrical exterior case

—~AU—-k*u=0 in & Mo o Ty
ou _ — ]

%: on 0QQ. :’ O _, .

u ] L

a_n: —M (k)u on FR'

where M (k) =M (k;D?), a function of D* =-8%/0y".

JE (n=0)

3 cos(Ey) (nz1)

5 —

ML Y) = Y&, [ UL 26, (2)dze, (1), ¢, ()=

e G == 0<n <Lk
-]

-7, nn:{(@_z)z_kz}uz, By <n



% 1D-Webster’s Model

Alz)
u: sound pressure, v: volume velocity
A(x): area function,

p: density, c: sound velocity - N
v A(X)au , 2
O v G R
2 ot~ A(X) oX
ou_ et oV
ot AX)ox’

% Time harmonic stationary reduced wave equation

1
A(X) X

(()—) k’u=0, k=w/c,

W oy=1, ML) Ziku(L) =M (Ku(L).
dx dx



@ \Weak formulation and discretization by FEM

Let H'(Qp) the Sobolev space of order one,
v H'(Q.)— HV*(T,), trace operatoron I

Find ueV such that
au,Vv) + U, M)y ) = (9, V)oar, » VveV,

where

a(u,v) = HVu .VV —k*uv ]dxdy, u,veV

Qg

(P Dy = | (M(K)P)O)T(O)RAO, p,qe H'(T})

(f.9)0 = | f-gdo, f.gel’(eQ).
0Q



@ Finite dimensional approximation
Let V, <V, 0<h<h, be a finite dimensional subspace of V.

Find U, €V, such that
Uy V) + e WD = (@) WY, €V,
Choosing basis {¥,}|., in V,, we have a matrix equation
AU + MU =F
where A, =a(¥t,,'¥,), M, = <‘PJ,‘P >|v|(|<)
U=[U,U,,...U,] with u,= ZU ¥,
F=[F,F,=0,F,=0,.] with F =@u™/on¥).,

There are several results on the convergence of approximation.

One method 1s based on Mikhlin’s result ( [5] ) for compactly
perturbed problem using the Fredholm alternative theorem and unique
continuation property (see, for example Kako [4]).
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@® Mathematical modeling and Numerical simulation
of wave propagation in wave guide

. Mathematical modeling of wave guide problem

Wave propagation phenomena in waveguide or in another unbounded region: Wave
equation and radiation problem ( based on mathematical scattering theory)

Time harmonic equation : Helmholtz equation and radiation condition at outer
boundary or at infinity which is generalized eigenvalue problem related to the
continuous spectrum

Frequency response function and its analytic continuation (resonance phenomena)

. Discrete approximation method by Finite Element Method (FEM)

Reduction to the problem in bounded region via the DtN mapping or its
approximation

Introduction of approximation space and its basis functions
Construction of approximation equation by projection method (FEM)

Numerical algorithm and some theoretical considerations



% Schematic diagram of open wave guide
Exterior region

Wave guide

= . Propagation
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Numerical examples 1n voice generation phenomena through
vocal tract (w=70000[Hz], ¢ = 33145[cm/s?])

Source
Vocal cord
part:
Incident
boundary

—

Filtering process by Exterior region
Vocal tract part

Radiation
boundary



Radiation

Vocal cord
part: boundary
Incident with
boundary plane.wav.e
approximation
Radiation
Vocal cord bo;r;ﬁ? Ty
part: Dirichlet to
Incident Neumann
boundary

mapping




% Numerical example of frequency response function and formants
In the case of voice generation ( DD15 & [4], [8])
Frequency response at
observation point x: W(z,w) = VRu(z,w)? + Su(z,w)?

1

In the case of vowel /a/

F1 F4

1
webster

- F5
|

|
01 F |1 [ ||

uix, fy
T

/ \ /N / \
0.01 A / \ P \\

0001 1 1 | 1 | 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000 4500
frequencylHz]

Formant: Peak of frequency response function
Empirically, 3 or 4 lowest formants characterize vowels



@® Computation by using FreeFEM++

Bifurcation phenomena from neutral straight waveguide tube
with four fundamental regions: R1, R2, R3, R4

(or more) V22 N

Neutral : straight tube

Case 1 :region R3 swells (— F1 up, F2 down) \
Radiation

boundary

Case 2 :region R2 swells (— F1 down, F2 up)

% FreeFEM++ is an open software having been developed by
Paris VI group and others: http://www.freefem.org/ff++/




@ Some observations from numerical results:
Frequency response function and its peaks are influenced
by the corresponding “resonant poles” in the complex plange

start

Numerical example for 1-D case: g
A(X) : area function . 5

|

A

W(x, k)

| I
10.0cm 12.0cm

v

imaginary_part

400
| 120
A 140

160

D R
*%9 1000 1500
2000

Perturbation from neutral 259 00 4000.4500
shape to a swelled one

real_part 5000

Change of frequency response function and
trajectory of moving resonant eigenvalues
defined 1n the next slide



% Correspondence between formants and
complex eigenvalues

Consider the eigenvalue problem for k = w/cin C
- Au = k*uin Q .

ou

an

= - M (k)uon T,

0O on 0 Q

o u
or

Real part of kK corresponds to the position of Formant, and
imaginary part of K to its height or width.



% Correspondence between complex eigenvalues
and frequency response functions

4500

5000

Four lines correspond to four trajectories of
complex eigenvalues



cross section a,rea,[ch]

Example: Changing of wave guide shape from the neutral shape
to another shape and corresponding trajectory of complex

eigenvalues and the frequency response function
f requency [H z‘]

Changing of wave guide shape . F requency response function

10 J l B Al
| | | | |
0
I I |
a0 |— —
5 -
/ -80 [— il
-120
! o s 10 1s 20

length from vocal cord[cm] 100 |- |

Trajectories of complex eigenvalues
" imaginary part

[

J

/!

/

real part

There 1s a good correspondence between frequency response
function and complex eigenvalues



% Iteration algorithm for computing complex eigenvalues

1. Compute frequency response function by FEM

2. Compute N local maximum points (=formants) of frequency
response function

3. Search the point that gives the local maximum value of
lu(z)| in the complex domain starting from the formants

4. Perform line search through the lines parallel to the real axis
and the 1imaginary axis alternatively

5. Find the pole 1n the complex domain as the limit point

6. Terminate the procedure when N poles (=complex
eigenvalues) are found



S

% Example in 2-D case:

(w)

—Au—u=20
ou _ _ iw
on —  Ap
a—u:iku

gn

Ju __

on

in €2

on I 2
i A=k =)

on I, c2

on M\ (IF's U Iy)

%Ew)



imoginary_part

imaginary_part
] ]

aupl itude

T T T T T

Neutral case

f | t 1 }

Complex eigenvalues

AMARINATY_Rart

mprl §tude

AMARINATY_Rart

ang | 1 Lude

=30

20

a4 tuda

65




% Resonance eigen-values and inverse problem

related to vocal tract shape and resonance

Theorem(Garding) Let w,, (n=1,2,3,...) be resonances of the Webster system:
A(X)p, +us =0, A(x)p; + u,, = 0, on [0,1] with boundary conditions p(0,t) =
§(1) and A(x)p(1,t) = bu(1,t), where 0 < b = A(1)/A,(< 1), a constant called
loss coefficient.

Then, Im w,,>0, Re w,, = 0 for all n, and there is an asymptotic expansion

w,~2"In—41+ic+ent+ce,nt 4+

for large n where 4mc = log((1 + b)/(1 — b)) > 0.

Conversely, given such numbers, they are the vowel resonances of a tube with
loss coefficient b = tan hyp 2m c and an infinitely differentiable function A(x),
unique when a normalized so that A(1) = 1.

Reference:

[1] Garding, L., The inverse of vowel articulation, Ark. Mat., 15.1 (1977), 63-86.

[2] Gel'fand, I.M. and Levitan, M.B., On the determination of a differential equation
from its spectral function. AMS, 1955.

[3] Sondhi, M. M., and B. Gopinath, Determination of Vocal - Tract Shape from
Impulse Response at the Lips, J. Acoust. Soci. America (1971) 1867-1873.

[3] Kirsch, A., An introduction to the mathematical theory of inverse problems;
Chapter 4.5 The inverse problem, Springer, 1996.



% Sensitivity or perturbation analysis of frequency
response with respect to vocal-tract shape variation:

[15] M. R. Schroeder, Determination of the geometry of the human vocal tract by
acoustic measurements, The Journal of the Acoustical Society of America, Vol.41,

Num.4 (1967) pp.1002-1010.

Ehrenfest's theorem: A(E,,/f,,) = 0, where A stands for an adiabatic
perturbation and the subscript n refers to one of the many linear
oscillator modes of the physical system under consideration. For a
small perturbation one may write

S En/fn— Enafn/fnz =0,0r6 fp/fn =0 En/En
1.e., the relative frequency shift is equal to the relative change in
energy of the oscillator. Furthermore, Brillouin has shown that

OE, = —fOL P,(x)6A(x)dx, with P = p?/2pc? — pv?/2

P. Ehrenfest, Proc. Amsterdam Acad. 19, 576-597 (1916).
See also Ann. Physik 51, 321-332 (1916); Phil. Mag. 33, 500-513(1917).



% Perturbation theory and Sensitivity function

Definition of “sensitivity function” due to Fant (see[5]) :
Relative frequency shift 6 F, /F, of resonance frequencies F; F,, F3 etc.

caused by a perturbation §A(x)/A(x) of area function A(x) is
referred to as “sensitivity function™

Characterization of “sensitivity function” by Fant & Pauli (see[5]):
Sensitivity function for area perturbation of any A(x) is equal to the
distribution with respect to x of the difference Ej,, — E,, between

the kinetic energy Ey, = %L(x) U?(x) and the potential energy
Exp = % C (x)P?(x) normalized by the totally stored energy.
Here U(x) is flow, P(x) is pressure and L(x) = o/A(x) is an

acoustic inductance and C(x) is some parameter function.

[5] Fant, G., The relations between area functions and the acoustic signal, Phonetica, 37
(1980) pp.55-86.



@ Variational formula of complex eigenvalues
for 1D case
Perturb the area function as

,

— L ((A+6A) L (u+ su))

= (k+6k)2(A+6A)(u+6u) in Q
di(u+5u) = 0 on g
\ %(u-l-&b) = i(k + 6k)(u + du) on I,

Modifying the above formula, we can derive
the variational formula for w = ck and hence dw = cdk :

(& 6A(2)2 — ) dr — 25 A(L)u(L)?)

dw(sA) =
w(dA) oL fd: Au?dx + i A(L)u(L)?

[10] Kako, T. and Touda, K., Numerical method for voice generation problem

based on finite element method, Journal of Computational Acoustics, Vol. 14,
No. 1 (2006) 45-56



% Directions calculated by the variational formula put on

the trajectories which coincide t

The first eigenvalue

The second one

e tangential directions

The third one

The fourth one

ooooooooooooooo

uuuuuuuuuuuuuuu

zzzzz



@ Vocal tract shape design algorithm

Y Strategy: to get a vocal tract shape for a given frequency response
function by designing the corresponding complex eigenvalues

el

Vocal tract shape Ag(a) :Initially given A : Unknown

—

Complex eigenvalues wg0>(a) :Initially given wy © Known target

% We design the vocal tract shape matching resonant eigenvalues:
M—-1

Ala@) = Az a) = ) opdp(e) a={a}(k=0,---,M~-1)
k=0

¢,.: Basic shape functions,
ay . design parameters,N M: number of parameters

Minimize . F(a) = Z w? — wn(oz)\Q a € RM

n=1
N:number of target eigenvalues

Then, we have the expression of variation of area function as

6A = Y3=g Sagdy (x)



% Optimization problem

Minimize: F(a)

}

To solve unconstrained optimization problem

% Conjugate gradient method with the line search, esp.
Polak-Ribiere method: only gradient is used (see [17])

of Tl = oak—l—cdj{C

(C can be determined by line search.)

(VF(?) = VE(*1)VF(F) 4

ko k
"= -VEO+ [V F(F1) |2

d® = —VF(Y)



% Algorithm to compute gradient VF
wp(atee;) 2 wpla)tedwn(d;) (0<i<M-1,1<n<N)
wdweCY ae RM ceR
Fla+ee;) — Fa)

(VF(a) ;= Iir% ) (i=0,---,M—1)
_ w, — wn(a + ee)|? — |w) — wn(a)?
=0, Z e
_ (wp, — wnla) — edwn(;))(wy — wn(a) — edwn(;))
- i % :

(@ — wn(0)) (W — wnla))

N * ] )
im 3 —2R[(wj; — wn(a))edwn(Pi)] + €2|0wn(;)|?

e—0 — €
n

— Z —2R[(w;, — wn(a))dwn(P;)]

n=1

Then we can use the variational formula of 6 w,, for computing VF (a).



@ Variational formula of resonance eigenvalues
for 2 and 3 dimensional cases




In the case of bounded domain and problem is self-adjoint
and hence the eigenvalues are all real, Hadamard has gotten:

Theorem (Hadamard): The first variation of the Neumann
eigenvalues of the Laplacian under domain perturbation 1s given by

2'(0) = j(| V. ul> —Au?)¥dA.
0Q

References:

[1] Hadamard, J., Mémoire sur le probleme d'analyse relatif a
1'équilibre des plaques ¢lastiques encastrées, Memories Presentes Par
Divers Savants A L'Academie des Sciences de L'Institut National de
France, Vol. 33, 1-126 (1908).

[2] Joseph, D.D, Parameter and domain dependence of eigenvalues of
elliptic partial differential equations, Archive for Rational Mechanics
and Analysis 24, 325-351 (1967).

[3] Zanger, D. Z. , Eigenvalue Variations for the Neumann Problem,
Applied Mathematics Letters 14 (2001) 39-43.



Proof: We start up with the following two equations:
—Au, — k(e)*u, =0 inQ,, €€ [0,g), (1)
—Au — k*u =0 inQ, u=uyk=k(0), (2)

and taking the difference of these equationsin (A N (.

we have

—A(u—u.) — (k*u—k()?*u,)=0 inQnQ,. (3)

Multiplying this equality by u, integrating it over {2 N ()., making use
of twice integration of parts and the equality —Au = k?u , we have

0= j (k(e)*ue — k*w)udx — j V(u, —u) - Vudx
anQ, anQ,
9
+ fa(mﬂg){% (u, —wludo

= Jona (k(e)*ue — k?u)u dx + Jq —u)Au dx

nﬂg

ad 9
0 £
an (k(g)z k?)uu, dx + fa(nnn yGom ”

U — U, g—z)da (4)



We derive the expression of % (0) as follows:
First of all, since we set k(O) = k, we have

k(e)? — k= (k+ —(0)8 + 0(e?))? —k? = 2k—(0)8 + 0(g?) (5)

Using the notation ©® = Q°, O, = Q.°, we have

dANQ,)=TrUuodOUB,)and (O UB,) =Ty UTy_/
with[g= 0d(OUB,) N dB and Iy, =3(O U B,) N 0O,
and radiation boundary I'p.

Now we have for the second term of (4)

aug ou . Jug
fa(@u@) (G U~ Ue _)dg = fr@\a@gﬁudg - fr oo He gy da (6)

du
— = I
as — 0 on @and an

Neumann boundary condition.

Remark: In the case of homogeneous Dirichlet condition, we have

aug ou _ ou Jug
— U~ )do = fre\a@)g Ue——do + fF@g\a@ ~~udo.(7)

= 0 on I by respective homogeneous

fa(G)uG) )(




Furthermore, since
n(x + ¥ ()n(x))}- Vu.(x + e?(x)n(x)) = 0on lo,,
we can estimate the first term of the last expression in (6) as follows:

dug Ooug
fF@\a@g 61; udo= fa(@ﬂﬂ ) 0 . UdO' fGﬂQE(Aug)u + Vu, - Vu dx
“Jona, —k(&)*uzu + Vu, - Vu dx= f@rmg —k(&)*u.u + Vu, - Vu dx.

Then, as & tends to zero, we have
—k(e)*u.u + Vu, - Vu dx=

(Vu-Vu — k*u?}¥(o)do+o(&?).

Jona,

e J

F@ﬂ{a |¥(0)<0}

Similarly, since n(x) Vu(x) = 0 on Iy, we have

— fr@\a(ag da efren{allp(a)zo}{Vu -Vu — k*u?Y¥(0)do+o(?).



Consequently, we have

d £
0= anQ (k(e)? — k?)uu, dx + fa(mﬂ G - U— U =-)do
—Zke—(O)f u®dx + ¢ [, {(Vu-Vu—k*u?}¥(o)do

a £
+faFR( —Ey —u, g)daw(ez).

Using Dirichlet to Neumann mapping on I'; and its derivative w.r.t. k,
we have

LFR((?;; vt gn)d“ = aFR{(M (k())u)u — uM(k)uldo

= 8— (0) {55_k (k)u} udo + 0(&2).

Here, we have used the complex symmetric property of DtN mapping.



Combining these results and noting the fact %u =(n-
V)u = 0 on d0® and hence

Vu=Vu-(n-V)u=V,uondo,

we finally obtain the result of
variational formula of resonance eigenvalue:

fa@{|‘7lu|2—k2u2}‘l’(0')d0'

= (0) =

oM ’
2k [, u? dx+faFR{W(k)u}uda



Conclusion

® We reviewed some numerical methods for wave guide problem
using finite element method based on the Helmholtz equation for
time harmonic wave propagation.

® We confirmed the relation between the frequency response
function and the complex eigenvalues.

® We introduced the variational formula for resonance eigenvalues
with respect to a small perturbation of boundary, and confirmed
the validity of numerical method for this formula.

® We considered the optimization problem to coincide with the
complex eigenvalue, and we proposed an algorithm to design the
wave guide shape based on this optimization problem using the
above formulation.



Thank you for your attention!
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