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MG and AMG: background and recent developments

The MG

Started with R. P. Fedorenko (early 60s);

Made real impact due to Achi Brandt, W. Hackbusch (late 70s);
Randy Bank, Steve McCormick, Stüben and Trottenberg, Harry
Yserentant (1st and 2nd European MG conferences, early 80s), and
many others after that.

The BPX and regularity-free theory by Jinchao Xu, and Bramble and
Pasciak, and Junping Wang (mid-to-late 80s and early 90s), and
Griebel and Oswald (1995).

The TL HB by Bank and Dupont 1980, Axelsson and Gustafsson
(1983); the ML HB method by Yserentant (additive) and Bank,
Dupont and Yserentant (multiplicative)- (mid-to-late 80s);

The algebraic stabilization of HB: the AMLI method by Axelsson and
PSV (late 80s-early 90s); and the wavelet-like HB stabilization by
PSV and Junping Wang (mid-to-late 90s).
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MG and AMG: background and recent developments

The MG (cont.)

The XZ-identity (Ludmil Zikatanov and Jinchao Xu (2002)).

The AMLI-MG and its nonlinear version (PSV (2008), with analysis in
Y. Notay and PSV (2008), and, in Xiaozhe Hu, PSV, and Jinchao Xu
(2013)).

Algebraic convergence analysis showing that the TG convergence
improves with increasing the smoothing steps (Xiaozhe Hu, PSV and
Jinchao Xu, 2015).
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MG and AMG: background and recent developments

The AMG

The classical AMG: originally proposed by Achi Brandt, Steve
McCormick and John Ruge (early 80s), and the most popular paper
by J. Ruge and K. Stüben (87).

The SA-AMG: P. Vaněk (1992), and P. Vaněk, M. Brezina and J.
Mandel (90s).

To address AMG scalability, there was a large effort (started in late
90s) at LLNL in collaboration with CU Boulder; in particular the
scalable solvers library hypre was designed and developed; also new
AMG methods were proposed: AMGe (2001), the spectral AMGe
(2003 and 2007), the adaptive SA-AMG (2004), adaptive AMG
(2006), and adaptive AMGe (2008).
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MG and AMG: background and recent developments

The AMG (cont.)

ML convergence analysis of SA-AMG: P. Vaněk, M. Brezina and J.
Mandel (2001) and in M. Brezina, P. Vaněk, and PSV (2012).

The TL spectral SA-AMG: proposed in a CU Denver report: M.
Brezina, C. Heberton, J. Mandel, and P. Vaněk (99), and its spectral
SA-AMGe version in M. Brezina and PSV (2011).
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MG and AMG: background and recent developments

The auxiliary space preconditioning:

The fictitious space lemma: Sergei Nepomnyaschikh (80s and 90s),
It is related to the distributive relaxation of Achi Brandt (70s) and
trasnformative smoothers by G. Wittum (mid-to-late 80s)
The general setting is due to Jinchao Xu (1996).

A main application: the HX-decomposition by Ralf Hiptmair and
Jinchao Xu (2006) which led to the scalable software by Tzanio Kolev
and PSV: AMS- H(curl ) (2009) and ADS: H(div) (2012), available
in MFEM and hypre ).

Additive representation of (A)MG: PSV (2008) and its impact on
parallel AMG coarsening: PSV and U. Yang (2014).
(Additive convergence analysis of V-cycle MG can be found earlier in
S. Brenner (2002).)
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MG and AMG: background and recent developments

The AMG (cont.)

In recent years: Explosion of AMG implementations: with various
applications, especially in oil reservoir simulations.
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AMG: a general philosophy for designing fast algorithms

In summary:
“(A)MG can be viewed as a recursive divide-and-conquer
methodology for designing fast algorithms that have the potential for
optimal order complexity.
The AMG algorithm (to be designed) aims to partition the solution
space in two complementary components:

(i) The 1st component can be handled by local (order O(n)) operations;
(ii) The second component, giving rise to a problem with reduced

dimension, should maintain the main properties of the original problem
so that recursion can be applied.

The decomposition is done implicitly by the algorithm we design. ”

The above items (i)-(ii) are a version of Achi Brandt’s definition (2000) of
“compatible relaxation” coarsening.
I.e., if we knew the solution at the coarse level, we should be able to
recover the remaining part of the solution fast in O(n) operations.

Panayot S. Vassilevski (CASC) AMGe July 6, 2015 10 / 81



The two–grid method: tools, TG operator and some basic
theory

MG = AMG as algorithms.

They differ in terms of the setup: in MG the tools are given, whereas in
AMG, the method builds the missing tools.

A - the given n × n s.p.d. matrix.

M - the smoother (weighted Jacobi, Gauss-Seidel, incomplete
factorization matrices, etc.). In theory, we need ‖I −M−1A‖A < 1 or
equivalently M + MT − A be s.p.d.

P : Rnc 7→ Rn, nc < n - the interpolation matrix; PT is the
“restriction” matrix.

Ac = PT AP - the coarse nc × nc matrix.

Set A := Ac and repeat.
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The two–grid (TG) algorithm for Ax = b
Given a current iterate x (initially x = 0), perform:

“Pre–smoothing”: solve My = b− Ax and compute the intermediate
iterate

x := x + y = x + M−1(b− Ax).

Restrict the residual, i.e., compute

rc = PT (b− Ax).

Solve for a coarse–grid correction,

Acxc = rc .

Interpolate and compute next intermediate iterate x := x + Pxc .

“Post–smoothing”: solve MT z = b− Ax, and compute the next
two–grid iterate,

xTG = x + z = x + M−T (b− Ax).
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The TG operator

The TG algorithm with zero initial iterate provides a mapping BTG

input b 7→ output B−1
TG b = xTG .
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Expressions for the TG and MG operators

We can define B−1
TG using the TG iteration matrix,

ETG = I − B−1
TG A

= (I −M−T A)(I − PA−1
c PT A)(I −M−1A).

Solving for B−1
TG , letting M = M

(
M + MT − A

)−1
MT , gives

B−1
TG = M

−1
+ (I −M−T A)PA−1

c PT (I − AM−1).

In the multilevel case, we have

B−1
k = M

−1
k + (I −M−T

k Ak )PkB−1
k+1P

T
k (I − AkM−1

k ).
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Additive form of the MG operator
Introducing the smoothed interpolant (as in SA AMG)

Pk = (I −M−T
k Ak )Pk ,

we end up with the additive representation

B−1
k = M

−1
k + PkB−1

k+1P
T
k .

Using recursion, we have the additive form of the MG operator
BV-cycle = B0,

B−1
V-cycle =

∑
k

P0 . . .Pk−1M
−1
k

(
P0 . . .Pk−1

)T
.

The additive MG, BPX, has the same form

B−1
BPX =

∑
k

P0 . . .Pk−1M
−1
k (P0 . . .Pk−1)T .

The difference is in the interpolation matrices; in MG we use the
smoothed ones, Pk , whereas in BPX, we use the original ones, Pk .
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Performance on finite element test problems

Naming convention: Variant.Level.Smoother.
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Characterization of KTG

We are interested in the spectral equivalence relations

vT Av ≤ vT BTG v ≤ KTG vT Av.

The method is optimal if KTG is a mesh-independent constant.
For any A-convergent smoother M, the TG method is A-convergent. I.e.,
we have that B−1

TG is s.p.d. and

vT Av ≤ vT BTG v.

The following main characterization holds:

Theorem (Falgout, PSV and Zikatanov (2005))

KTG = max
v

min
vc
‖v − Pvc‖2eM
vT Av

.

M̃ = MT (M + MT − A)−1M is the symmetrized smoother

(such as symmetric Gauss–Seidel).

The above result can also be derived from the TL XZ-identity.
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The weak approximation property

If M̃ ' DA, the diagonal of A (typical case):

convergent TG implies the “weak” approximation property:

‖v − Pvc‖2
DA
' ‖v − Pvc‖2eM ≤ KTG vT Av.

In the simplest case, DA ' ‖A‖ I , it takes the form

‖A‖
1
2 ‖v − Pvc‖ ≤ ηw ‖v‖A.
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The finite element case: necessary condition for TG
convergence

Let A come from a bilinear form a(., .) and fine-grid f.e. space Sh,

Use a coarse space SH on a mesh H ' h.

Then, the matrix-vector “weak approximation property” translates to

inf
vH∈SH

‖vh − vH‖0, ρ ≤ CH
√

a(vh, vh).

The left–hand side is a ρ–weighted L2–norm (the weight ρ comes from the
diagonal of A).
It is a necessary condition for uniform (in h 7→ 0) TG convergence.

That is, the coarse space SH cannot be arbitrary.
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AMG is an inverse problem

In AMG, we need to generate the coarse hierarchy

interpolation matrices P;

coarse-grid matrices Ac = PT AP.

This is an “ill–posed” inverse problem: i.e., there are many coarse spaces
that can do similar (good or bad) job.
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The necessary condition gives guidelines for AMG

The necessary condition for TG when M ' ‖A‖I , reads

‖A‖
1
2 ‖v − Pvc‖ ≤ ηw ‖v‖A.

It gives the major guidelines:

If v is such that Av ≈ 0, then Pvc ≈ v.

That is, the coarse space should essentially contain (or approximate
very well) vectors in the near nullspace of A.

Another corollary is that the coarse interpolant should be bounded in
energy:

‖Pvc‖A ≤ ‖v‖A + ‖A‖
1
2 ‖v − Pvc‖ ≤ (1 + ηw )‖v‖A.

That is, we want to have an interpolation mapping P that exhibits
some “energy” minimization property.
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Element agglomeration algebraic MG (AMGe)

If we use fine–grid finite element information, a subclass of AMG is the
so–called

element based AMG, or AMGe, proposed in 2000 (by a team from CU
Boulder and CASC, LLNL).

If we generate coarse counterparts of elements and element matrices by
recursively agglomerating fine-grid elements, we end up with the

element agglomeration AMGe proposed in 2001 (J. Jones and P.S.V.).
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AMGe: an element agglomeration algebraic MG

Figure: Illustration of unstructured agglomerates in 3D
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The spectral AMGe: a scale of coarse spaces with
approximation that improves
In Chartier et al. (2003, and in DD16 Proceedings, 2007), the following
spectral choice of coarse dofs was proposed:

−∇ · [k (x)∇p] = f ⇒ Finite Elements ⇒ Au = f

Given an unstructured FE mesh. Would like a
coarse space that we can use for accurate coarse
discretization and multilevel solvers.

Subdivide the mesh into nonoverlapping groups of
agglomerated elements {T}.

Coarse basis functions come from low-energy
eigenmodes of subproblems on agglomerates:

{qk} s.t AT qk = λkDT qk for all λk ≤ θ‖D
− 1

2
T AT D

− 1
2

T ‖

We select the 1st mT ≥ 1 near-null space components qk .
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Spectral Agglomerated Element AMGe and SA
Form local interpolant P i for ith aggregate (subset of T ) using qk |T .

Then form (global) tentative interpolation operator.

P =


P1 0 0

0 P2 0

0 0
. . .

...

0 0 . . . Pnc

 0000000

Smooth coarse basis for better energy stability:

P =
(
I − pν

(
D−1A

))
P for some polynomial pν .

This version is from Marian Brezina and P.S.V. (2012). An earlier
version: M. Brezina, C. Heberton, J. Mandel, and P. Vaněk (1999).

The convergence of the TG SA-%AMGe improves with increasing the
polynomial degree (Xiaozhe Hu, PSV and Jinchao Xu (2015)).
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SA-%AMGe: upscaling error estimates

By construction, we have the error estimate (Brezina and P.S.V. 2012):

H−1‖v − PQv‖G ≤ β1

(
1 + max

T

(
h2

H2λmT +1

) 1
2

)
‖v‖A,

and energy stability

‖PQv‖A ≤

(
1 + β2 max

T

(
h2

H2λmT +1

) 1
2

)
‖v‖A.

The norm ‖.‖G corresponds to the weighted L2-norm:
(∫

k(x)v2(x) dx
) 1

2 .

The constants βs are independent of the coefficient k = k(x).

Also, λmT +1 behaves like
(

h
H

)2
.
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Coarse spaces for numerical upscaling

In many applications, repeated simulations are needed, which can
easily become computationally infeasible unless dimension (model)
reduction is applied.

It can be achieved by accurate coarse models referred to as numerical
upscaling.

Our approach is based on discretizations using the AMGe coarse
spaces with guaranteed approximation properties.
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Achieving practical numerical upscaling

To achieve practical numerical upscaling we need:

to reduce the problem size while maintaining reasonable accuracy;

to reduce the memory to store the coarse (upscaled) problem.

The first item is typically the main goal that many researchers try to
accomplish. It is related to the arithmetic complexity (AC)

AC ≡ # dofsfine + # dofscoarse

# dofsfine

< 2 or even better AC ≈ 1.
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Achieving practical numerical upscaling

However, the second item is even more crucial for achieving upscaling:

If the memory to store the coarse problem is larger than the one of the
fine-grid problem, even if we have substantially reduced the number of
degrees of freedom, this is NOT a meaningful “reduced dimension model”.

In AMG terminology, we need to ensure that the operator complexity (OC):

OC ≡ nnzfine + nnzcoarse

nnzfine
< 2 or even better OC ≈ 1.
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SA-%AMGe: examples for upscaling in 2D

a 3D domain with dimensions 1200× 2200× 170 units, divided into
cells of size 20× 10× 2 units.

The fine-scale model in 3D has 60× 220× 85 cells.

The 3D domain is cut into 85 horizontal slices and we solve a 2D
problem for each slice.

Each 2D domain has dimension 1200× 2200 units, divided into cells
of size 20× 10.

Each 2D mesh has 60× 220 elements (13200 fine-grid elements).

The coefficient k(x) is a piecewise constant scalar function.
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SA-%AMGe: coarse space VH properties

The characteristics of the constructed coarse space VH are:

1 the number of coarse degrees of freedom (coarse space dimension);
2 the sparsity pattern of the coarse stiffness matrix Ac = PT AP

O.C . =
nnz(A) + nnz(Ac )

nnz(A)
;

3 the energy error reduction:√
a(uh − uH , uh − uH)

a(uh, uh)
=
‖u− PA−1

c PT Au‖A

‖u‖A
,

where u solves Au = f.
4 the weighted-L2 error reduction: Let G be the k-weighted mass

matrix.
‖uh − uH‖0,k

‖uh‖0,k
=
‖u− PA−1

c PT Au‖G

‖u‖G
,

where u solves Au = f.
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SA-%AMGe: Approximation property versus
spectral tolerance

left: ‖u− Puc‖A(k)/‖u‖A(k)

right: ‖u− Puc‖G(k)/‖u‖G(k)

1 mesh refinement and varying θ (53361 fine dofs, nnz(A) = 476881, 370
agglomerates).
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SA-%AMGe: Operator complexity and # coarse
dofs versus spectral tolerance

left: Operator complexity
right: Number of coarse dofs

1 mesh refinement and varying θ (53361 fine dofs, nnz(A) = 476881, 370
agglomerates).
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SA-%AMGe: Approximation property versus
spectral tolerance

left: ‖u− Puc‖A(k)/‖u‖A(k)

right: ‖u− Puc‖G(k)/‖u‖G(k)

2 steps of refinement and varying θ (212321 fine dofs, nnz(A) = 1904161,
1460 agglomerates)
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SA-%AMGe: Operator complexity and # coarse
dofs versus spectral tolerance

left: Operator complexity
right: Number of coarse dofs

2 steps of refinement and varying θ (212321 fine dofs, nnz(A) = 1904161,
1460 agglomerates)
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SA-%AMGe: fixed H/h and θ = 0.03

left: ‖u− Puc‖A(k)/‖u‖A(k)

right: ‖u− Puc‖G(k)/‖u‖G(k)
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SA-%AMGe: k(x), u, Puc and u− Puc

k(x)(logarithmic scale) u

Puc u− Puc

Slice 0 (θ = 0.03 and the mesh is refined once).
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SA-%AMGe: k(x), u, Puc and u− Puc

k(x)(logarithmic scale) u

Puc u− Puc

Slice 12 (θ = 0.03 and the mesh is refined once).
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SA-%AMGe: k(x), u, Puc and u− Puc

k(x)(logarithmic scale) u

Puc u− Puc

Slice 24 (θ = 0.03 and the mesh is refined once).
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SA-%AMGe: k(x), u, Puc and u− Puc

k(x)(logarithmic scale) u

Puc u− Puc

Slice 36 (θ = 0.03 and the mesh is refined once).
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SA-%AMGe: k(x), u, Puc and u− Puc

k(x)(logarithmic scale) u

Puc u− Puc

Slice 48 (θ = 0.03 and the mesh is refined once).
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SA-%AMGe: k(x), u, Puc and u− Puc

k(x)(logarithmic scale) u

Puc u− Puc

Slice 60 (θ = 0.03 and the mesh is refined once).
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SA-%AMGe: k(x), u, Puc and u− Puc

k(x)(logarithmic scale) u

Puc u− Puc

Slice 72 (θ = 0.03 and the mesh is refined once).
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SA-%AMGe: k(x), u, Puc and u− Puc

k(x)(logarithmic scale) u

Puc u− Puc

Slice 84 (θ = 0.03 and the mesh is refined once).
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SA-%AMGe: Comparison with uH ,geom

k(x)(logarithmic scale) u

uH,geom Puc

Slice 72: Fine-grid solution u, geometric coarse-grid solution uH,geom (H/h = 4), and spectral SA-AMGe coarse solution Puc

(H/h = 12 and θ = 0.03).
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SA-%AMGe: Comparison with uH ,geom

u− uH,geom u− Puc

Slice 72: Errors between fine-grid solution and geometric coarse-grid
solution (H/h = 4), and between fine-grid solution and spectral SA-AMGe

coarse solution (H/h = 12 and θ = 0.03).
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Main project: Coarsening de Rham complexes on
agglomerated elements

Sh
∇−−−−→ Qh

curl−−−−→ Rh
div−−−−→ Mh

ΠS
H

y ΠQ
H

y ΠR
H

y ΠM
H

y
SH

∇−−−−→ QH
curl−−−−→ RH

div−−−−→ MH

Initial approach (handles solvers only):
J. E. Pasciak and P. S. V., “Exact de Rham Sequences of Spaces Defined on Macro-elements in Two and Three Spatial

Dimensions,” SIAM Journal on Scientific Computing 30(2008), pp. 2427-2446.

Improved approach (handles solvers and upscaling) for H(div):
I. Lashuk and P. S. V., “Element Agglomeration Coarse Raviart-Thomas Spaces With Improved Approximation

Properties,” Numerical Linear Algebra with Applications 19(2012) pp. 412-426.

The general case:
I. Lashuk and P. S. V., “The Construction of Coarse de Rham Complexes with Improved Approximation Properties,”

Computational Methods in Applied Mathematics 14(2)(2014), pp. 257-303.
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Other applications utilizing AMGe coarse spaces

Use the coarse hierarchies for:
1 multilevel Monte Carlo and multilevel Markov Chain Monte Carlo

(MCMC) methods.
2 adaptively changing the coarse hierarchies when the PDE coefficients

change (as in MCMC).
3 multilevel solvers for the upscaled problem (which can still be fairly

large) for H(div) and H(curl) problems.

Since the approach is algebraic, we can target non-PDE applications:
1 Coarsening of graphs (arising in various network simulations);
2 Coarse de Rham sequences for graph Laplacian.
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Application to MC simulations

Standard Monte Carlo

The standard MC estimator for a quantity of interest E (Q) is

1

N

N∑
i=1

Qh(ωi ).

Its mean square error MSE is given by

MSE =
1

N
Var [Qh] + (E [Q − Qh])2 .

The second term (which we do not have explicitly) is discretization
error. It gets smaller when h 7→ 0.

The first term can be reduced by choosing large N.
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Application to MC simulations

MC method requires generating a lot of samples which involves
solving PDE on fine mesh, so even a single solve may pose a
significant challenge.
Our goal is to use the coarse spaces from the respective column(s) of
the hierarchy of the coarse de Rham complexes to speed-up the MC
process, using the MLMC.

Figure: Coarse H(div)-conforming shape function and its divergence.
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Application to MLMC with algebraic coarse spaces

Multilevel Monte Carlo

The MLMC method from

M.B. Giles, “Multilevel Monte Carlo path simulation,” Operations Research, 56(3):607617, 2008.

relies on the multilevel decomposition

E [Qh ] = E [QL] +
LX

l=1

E [Ql−1 − Ql ], where Q0 = Qh.

The decomposition is useful since the mean square error is estimated as

MSE =
1

NL

Var[QL] +
LX

l=1

Var[Ql−1 − Ql ] + (E [Q − Q0])2
.

The first term is on the coarsest mesh hL, hence fixed, the intermediate terms have the property

Var[Ql−1 − Ql ]� Var[Ql ],

hence require much less samples, and the last one is the fine-grid discretization error.

In what follows, we apply the algorithm as described and analyzed in

K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, “Multilevel Monte Carlo methods and applications to elliptic PDEs
with random coefficients, Computing and Visualization in Science, 14(1):315, 2011.
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Estimating effective permeability in subsurface flow
We solve mixed Darcy system:

k−1(x, ω)u +∇p = 0,
div u = 0,

with boundary conditions p = 1 on Γin, p = 0 on Γout , u · n = 0 on Γs .
The quantity of interest Q = E [keff (.)] is the expected value of

keff =
1

∆P

∫
Γout

u(·, ω) · ndS .
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Estimating effective permeability in subsurface flow

Generating Samples

We use the truncated Karhunen-Loève expansion to generate spatially
correlated random permeability (correlation length λ).
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Estimating effective permeability in subsurface flow

Multilevel acceleration of MC

The percentage of time spent on the fine grid decreases as we require for
more accuracy and we allow for more levels.
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Parallel Multilevel Monte Carlo - Example

Estimate water cut in top right well using the top layer of SPE10

Parallel sampling with 60 cores.

38 eigenmodes in both directions & variance target: 10−5

Level #DoFs #samples E [Ql ] Var
ˆ
Ql − Ql+1

˜
Cost (seconds) per realization

Level 0 (fine) 66280 180 0.1112 0.00042182 100.8
Level 1 7409 840 0.1132 0.00149328 12.5
Level 2 639 2820 0.1211 0.00109587 0.75

MLMC: 180× 100.8 + 840× 12.5 + 2820× 0.75 ≈ 8.5 hours
MC needed 1020 realizations to converge: 1020× 100.8 ≈ 28.6 hours

Note: KLE not a scalable approach.
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Numerical upscaling of incompressible flow in reservoir
simulation: governing equations

K−1
λ
−1(S)u +∇p =

 X
α

ραfα(S)

!
g∇z (1)

∇ · u = q (2)

φ
∂Sα

∂t
+∇ · uα(Sα) =

qα

ρα
, (3)

where

Sα is the phase saturation

p is the pressure

ρα is the mass density

qα is the source term

φ is the porosity.

α = o,w, g , and o stands for oil, w stands for water, and g stands for gas.

K is the absolute permeability tensor

µα is viscosity

kr,α is relative permeability,

and g is the gravitational acceleration.

Details in: Zhangxin Chen, Guanren Huan, and Yuanle Ma, Computational Methods for Multiphase Flows in Porous

Media, Society for Industrial and Applied Mathematics, 2006.
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Model and solution scheme

Two-phase incompressible rock and fluids

Total velocity formulation (primary variables: u, p, S)

Improved IMPES (implicit for velocity and pressure, explicit for
saturations)

This formulation leads to the solution of a large sparse indefinite linear
system (saddle point problem) for velocity and pressure[

M BT

B −C

] [
U
P

]
=

[
Fu

Fp

]
, (4)

followed by several explicit (Forward Euler) updates of the saturations

Sn+1
α = Sn

α + ∆t
1

φ
W−1(F (Sn,u) +

1

ρα
Wqα(Sn, p)) (5)
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Construction of coarse spaces

Operator-dependent coarse spaces with improved approximation
properties for velocity. 2-step method to find coarse velocity space:

1 Singular Value Decomposition to find coarse basis functions on coarse
faces.

2 Solution of local saddle point problem to extend basis functions into
the interior of the neighboring agglomerated elements.

Possesses same stability and approximation properties as the original
discretization.

Well-suited for parallelization with e.g. MPI(+OpenMP).

I.V. Lashuk and P.S. Vassilevski. Element agglomeration coarse Raviart-Thomas spaces with improved approximation properties.

Numerical Linear Algebra with Applications, 19(2):414-426, 2012
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Parallel upscaling

SPE10: 60x220x85 elements
Parallel subdomain split with METIS (48 cores)
Cartesian agglomeration on parallel subdomains
3 levels (including fine grid) with coarsening factors: Level 0⇒1:
(2,4,1) and Level 1⇒2: (2,2,2)
15 years of water injection
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Agglomeration in parallel
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Parallel results - total velocity after 15 years
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Parallel results - saturation of water after 15 years
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Numerical upscaling of incompressible flow in reservoir
simulation: SAIGUP mesh

Figure: Full coarsening: 16 fine elements per agglomerate
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Numerical upscaling of incompressible flow in reservoir
simulation

Figure: (x , y)-semi-coarsening: 16 fine elements per agglomerate
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Numerical upscaling of incompressible flow in reservoir
simulation

Figure: Structured (x , y)-semi-coarsening (Cartesian semi): 16 fine elements per
agglomerate
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Numerical upscaling of incompressible flow in reservoir
simulation

We used the coarse Raviart-Thomas H(div) spaces from the AMGe
multilevel hierarchy of the de Rham sequence to discretize the mixed f.e.
problem for the total velocity.

Problem #elements #faces #DoFs nnz arithmetic complexity operator complexity
Fine grid 78720 243576 479736 3549946 - -
Full coarsening (4) 17210 82081 168060 3039542 1.41412 1.85622
Full coarsening (16) 4920 25633 65422 1620930 1.17211 1.45661
Full coarsening (4)* 17960 84401 171960 3054520 1.4221 1.86044
Full coarsening (16)* 5616 28108 69924 1697050 1.18211 1.47805
Semi coarsening (4)* 14761 73982 173180 4080239 1.44573 2.14938
Semi coarsening (16)* 5629 30408 81513 2564226 1.21798 1.72233
Cartesian semi (4)* 20660 64372 175336 2194200 1.41582 1.61809
Cartesian semi (16)* 5970 19001 61025 901477 1.1523 1.25394
Cartesian semi (64)* 2100 6653 20683 318655 1.05114 1.08976

Table: Degrees of freedom, number of non-zeros and complexities. * means
elements with wells and immediate neighbor elements of wells are left
unagglomerated.
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Numerical upscaling of incompressible flow: water
saturation results

Next figures show water saturation after 30 years of injection for both the
fine grid and upscaled solutions. Elements with production wells are
marked with a pink color.

Figure: Fine grid reference solution.
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Numerical upscaling of incompressible flow: water
saturation results

Figure: (x , y)-semi-coarsening (4 fine elements per agglomerate).
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Numerical upscaling of incompressible flow: water
saturation results

Figure: (x , y)-semi-coarsening (16 fine elements per agglomerate).
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Numerical upscaling of incompressible flow in reservoir
simulation
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Figure: Daily oil production and water cut for fine grid 60× 220 and upscaled
models.
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Numerical upscaling of incompressible flow in reservoir
simulation
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Figure: Difference between fine grid 60× 220 and upscaled models in terms of
daily production.
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Numerical upscaling of incompressible flow in reservoir
simulation
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Figure: Difference between fine grid 60× 220 and upscaled models in terms of
accumulated production.
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The coarse Raviart–Thomas portion of the de Rham
complex: some details

We are given Rh ⊂ H(div) and Wh ⊂ L2 on a simplicial triangulation Th of
Ω ⊂ R3.
We have generate agglomerated elements T that cover all fine-grid
elements with some regular topology.
Assumption:

(A) On each T we are given a set of function {r(T )
i } and {p(T )

j } that we
want to include (locally) in the coarse pair of spaces RH and WH .

We assume
div r

(T )
i ∈ {p(T )

j }.

The constant is contained in the set {p(T )
j }, which is L2(T )-orthogonal.
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The coarse Raviart–Thomas portion of the de Rham
complex: some details

On each coarse face F = ∂T− ∩ ∂T+, we choose a linearly independent

set of traces {rF
H · nF} that span the traces of the given sets {r(T−)

i · nF}
and {r(T+)

i · nF} plus the function with 1 constant normal trace on F .

Each trace rF
H · nF extended by zero on all other faces of T , is

extended in the interior of T by solving the local mixed problem

aT (rF
H , v) +(div v, p)T = 0, for all v ∈ Rh(T ), v · n = 0 on ∂T

(div rF
H , q)T = const(1, q)T , for all q ∈Wh(T ).

Complete the spaces by adding element bubbles:
r0

H such that div r0
H = p

(T )
i for all p

(T )
i with zero meanvalue on T ;

For any given ri subtract its F -interpolant spanned by the F -based
basis functions. The difference is an element bubble. We add its
orthogonal complement to the previous set of bubbles.

Define RH = span{rF
H , r0

H}. By construction (and assumption) we have

div RH = WH .
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The coarse Raviart–Thomas portion of the de Rham
complex: some examples

Examples of the sets {r(T )
i } and {p(T )

j }.

The same piecewise polynomials that are contained in the fine-grid
spaces Rh and Wh.

For {p(T )
j }, and the traces rF

i , we can use the following extension of
the spectral AMGe method:
On each T solve the eigenvalue problem for µ, p and u:

aT (u, v) +(div v, p) +(µ, v · n)∂T = 0,
(div u, q) = −λ(p, q),

(u · n, θ)∂T = −λ(µ, θ)F .

Then from the lower portion of the spectrum, we select the respective

p and µ and set p
(T )
j = p and rF

i = µ|F for each F ⊂ ∂T .
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The coarse de Rham complex: Nédélec and H1-conforming
spaces
Given a set of functions {q(T )

k }: curl q
(T )
k is spanned by the RT set {r(T )

i }.

Use the traces on coarse edges, extend them into each coarse face F
by solving a local mixed problem of each F , and add face bubbles.

Extend the constructed face data in the interior of the agglomerated
elements and add element bubbles.

The construction ensures:

A coarse divergence-free function is a curl of a coarse Nédélec
function;

There are two computable projections such that

curl πQ
H q = πR

Hcurl q for any q ∈ Qh.

The final pair of spaces Sh ⊂ H1 and Qh ⊂ H(curl ) is handled similarly.
I. Lashuk and P. S. V., “The Construction of Coarse de Rham Complexes with Improved Approximation Properties,”

Computational Methods in Applied Mathematics 14(2)(2014), pp. 257-303.
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Coarse de Rham complexes on graphs
A graph G consist of a set of vertices V and a set of edges e = (i , j) ∈ E ,
i , j ∈ V .

An internet graph from http://opte.org

a vertex-based space S ;
an edge-based space U.

(Grad v)(e) = εe(vi − vj ), e = (i , j).

Div = (−Grad)T .

Graph Laplacian L:

(Lu, v) =
∑

e=(i ,j)∈E

(Grad v)(e)(Grad u)(e).
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Coarse de Rham complexes on graphs

Graph Laplacian system Lp = f can be written in a mixed form:

u + Grad p = 0,
Div u = f .

edges as “elements”
the local quadratic forms Le(u, v) = (Grad v)(e)(Grad u)(e) as
“element matrices”.

Using edge-agglomeration, the AMGe constructs coarse edge space UH

and a coarse vertex space SH (of piecewise constants). Also there is a
computable projection πH , such that (P.S.V. and Ludmil Zikatanov
(2014))

U
Div−−−−→ S

πH

y yQH

UH −−−−→
Div

SH

is commuting where QH is the `2-based projection on the space SH .
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Coarse de Rham complex for graphs
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Plot of the neighborhood of a subgraph. Different colors indicate the different values of the piece-wise constant divergence.
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Conclusions

We have developed an element agglomeration AMGe methodology for
coarsening entire de Rham complex of fine-grid spaces, so that

the coarse spaces in the complex contain any pre-selected sets of
fine-grid functions locally.
the coarse complex is also exact;
we have access to computable projections operators that ensure
commutativity with the respective differential operators, and gives
computable coarse operators

∇H , curl H , divH ,

represented as sparse matrices. Useful for discretization and solver
purposes.

We demonstrated that the coarse hierarchy is useful for numerical
upscaling and for running MLMC simulations more effectively on
general unstructured agglomerates.
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