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The problem 
•  A nonlinear system  F(u) = 0  may 

be “stiff,” in the sense that the iso-
contours of the merit function, 
e.g.,  f (u) =||F(u)||2 , are far from 
hyperellipsoidal, giving a small 
local convergence domain 

•  This may be combined with linear 
ill-conditioning, in the sense that 
the hyperellipsoids are locally 
badly stretched  
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Typical causes of nonlinear stiffness 
[Cai, K, Young, 2000] : shocks, 
reaction zones, boundary 
layers, interior layers 

converging-diverging wind tunnel 
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Key idea 

•  Newton method for a nonlinear system solves  F(u) = 0 
–  computes a global Jacobian matrix, and a global Newton step by 

solving the global linear system 

•  Nonlinearly preconditioned Newton solves  F(u) = 0 
–  implemented Jacobian-free through set of local problems on 

subsets of the original global nonlinear system 
–  each of the linear systems for local Newton updates has only local 

scope and coordination 
–  still global coordination in outer steps, hopefully many fewer than 

required in the original Newton method 
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A selective history 
[Lions, 1988] : On the Schwarz Alternating Method. I, 2-subdomain 
procedure for monotone nonlinear problems by alternating variational 
minimization in each subdomain 
[Cai, Gropp, K & Tidriri, 1994] : Newton-Krylov-Schwarz Methods in 
CFD, a matrix-free method based on global linearization and local 
preconditioning 
[Cai & Dryja, 1994] : Domain decomposition methods for monotone 
nonlinear elliptic problems, quadratic convergence proof for Newton, 
based on global linearization and local preconditioning 
[Dryja & Hackbusch, 1997] : On the nonlinear domain decomposition 
method, an additive nonlinear Richardson iteration based on the 
solution of local nonlinear problems 
[Cai & K, 2002] : Nonlinearly preconditioned inexact Newton algorithms, 
matrix-free Newton acceleration of [Dryja & Hackbusch, 1997]  
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Equivalent system 

• Find solution u* of  F(u*) = 0  from  F(u*) = 0 
– using inexact Newton 
– linear systems solved with matrix-free Krylov  
– globalized with backtracking line search or trust 

region, etc. 

•   F(u) = 0  and  F(u*) = 0  have the same solution  
•   F(w) is easily computable for  w  in  Rn 
•   F’(w)v is also easily computable for  w, v  in  Rn 
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Inexact Newton w/Backtracking 

•  loose tolerance on forcing term  ηk  when INB used as an outer method  
•  tight tolerance when used as an inner method  
•  dependence on   ηk  studied later 
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Why nonlinear Schwarz preconditioning? 
2000: Robustify Newton and improve its efficiency  

 - Additive Schwarz Preconditioned Inexact Newton (ASPIN) 
 - interchange order of linearization and decomposition 
 - spend majority of effort on local problems 
 - local problems are smaller and better nonlinearly conditioned  
 - create better nonlinearly conditioned global problem, Jacobian-free 
 - high concurrency through domain decomposition 

2010: Relax global synchronization requirements of Newton 
 - fewer global synchronizations 
 - local synchronizations, asynchronous to each other 

2015: Further robustify Newton for multicomponent systems 
 - Multiplicative Schwarz Preconditioned Inexact Newton (MSPIN) 
 - precondition multiphysics through (sequential) uniphysics solves 
 - nest ASPIN (on subdomains) inside MSPIN, for reasons above 
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ASPIN: nonlinear domain decomposition 

⌦i
⌦ =

N[

i=1

⌦i, i = 1, . . . , N
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ASPIN: construction through local solves 

•  Concurrent (possibly overlapping) local solves for local 
corrections, using existing code 

•  Sum for global residual 

•  Finite difference for global Jacobian-vector product 
•  No new code required for  F  or its Jacobian  J	



F⌦i(u� T⌦i(u)) = 0, i = 1, . . . , N

F(u) =
NX

i=1

T⌦i(u),
N[

i=1

⌦i = ⌦
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ASPIN: 2-component example 
(nonoverlapping) 

Original system 

Transformed system 

where (u,v) are obtained implicitly by solving independently 



DD23 | Jeju | 10 July 2015 

ASPIN: 2-component example (cont.) 
Jacobian of preconditioned system 

where                                 and  
Since  (p,q)  approach  (u,v)  as the solution converges locally, 
the preconditioned Jacobian is locally well approximated by 
the readily computable 

Diagonal blocks are identities, so linear conditioning depends 
on coupling strength in the off-diagonals 
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ASPIN: 2-component example (cont.) 
Operationally, the approximate preconditioned matvec   
 
 
is straightforward, in terms of code for the original problem: 

Generalization to 3 or more components is straightforward 
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Multiplicative generalizations 
•   [Kahou et al., 2007, 2008] : multiplicative generalization of linear 

additive Schwarz (Richardson and Krylov-accelerated) 
–  applied to standard sparse test matrices 
–  of limited interest due to lack of exploitation of concurrency 

•   [Ernst et al., 2007] : multiplicative generalization of nonlinear  
additive Schwarz (Richardson) 
–  applied to acoustic-structure interaction (structure being nonlinear) 
–  remarked: “inexact Newton generalization is future work” 

•   [Liu & Keyes, 2015] : multiplicative Schwarz preconditioned 
inexact Newton (MSPIN)  
–  interesting for multicomponent problems, where the number of multiplicative 

stages is small 
–  each stage represents a different component of the physics, for which an 

individual solver is presumed available 
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Source of today’s talk 
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MSPIN: 2-component example 
(nonoverlapping) 

Original system 

Transformed system 

where (u,v) are obtained implicitly by solving sequentially 



DD23 | Jeju | 10 July 2015 

MSPIN: 2-component example (cont.) 
Jacobian of preconditioned system 

where                                 and  

As before, since  (p,q)  approaches  (u,v)  as the solution 
converges locally, the preconditioned Jacobian is locally well 
approximated by the readily computable 
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MSPIN: 2-component example (cont.) 
Operationally, the approximate preconditioned matvec   
 
 
is again straightforward, in terms of code for the original 
problem: 

Generalization to 3 or more components is block triangular, as 
expected 
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•  Assume original Jacobian  J = F’(u)  is continuous in a 
neighborhood  D  of the exact solution  u*  and nonsingular at  
u* 

•   [Dryja & Hackbusch, 1997] : the original subproblems for TΩi 
are all uniquely solvable in a neighborhood of  u*  in  D 

•   [Dryja & Hackbusch, 1997] : the matrix  Σi (Ji
+) J  , where Ji  

represents the Jacobian of the ith subdomain extended to the full 
space, and  Ji

+  denotes its generalized inverse, is nonsingular in 
a neighborhood of  u*  in  D   

•  Remark : if  F(u) = b - Au , this is just the additive Schwarz 
preconditioned operator,  Σi (Ai

+)A  
•  The Jacobian of the ASPIN modified system  J = F’(u)  

approaches  Σi (Ji
+) J  as  u  approaches  u* 

Nonlinear preconditioning: theory 
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•   [Cai & K, 2002] :  F(u)  and ASPIN’s  F(u) are equivalent in that 
they possess the same solution in a neighborhood of  D 

•   [An, 2005] : ASPIN local convergence guaranteed 
–  superlinear if forcing term in inexact Newton approaches 0 
–  quadratic if forcing term approaches 0  like  O(||F(�)||) 

•   [Liu & K, 2014] :  F(u)  and MSPIN’s  F(u) are equivalent in 
that they possess the same solution in a neighborhood of  D 

•   [Liu & K, 2015] : MSPIN local convergence guaranteed 
–  superlinear if forcing term in inexact Newton approaches 0 
–  quadratic if forcing term approaches 0  like  O(||F(�)||) 

 

Nonlinear preconditioning: theory 
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Examples 

Newton convergence 

Driven 
cavity 
model 

(ex19 in 
PETSc) 

reservoir 
model 

(SPE10) 

Newton convergence 

ASPIN convergence 

ASPIN convergence 
by subdomains 

MSPIN convergence 
by fields 
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ASPIN: PETSc implementation 
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2-unknown algebraic example [Hwang, 2004] 

For ease of manipulation and visualization, consider 

For ASPIN (Jacobi-like) 

For MSPIN (Gauss-Seidel-like) 
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Original vs. ASPIN vs. MSPIN 

One ninth-order, one linear, both equations couple unknowns 

Both third-order, one equation decouples 

One third-order, one linear, both equations couple unknowns 

All have 
same root, 

namely 
(1,1) 
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Original vs. ASPIN vs. MSPIN 

Contours of 
log( ||F(x1,x2)|| + 1 ) 

original 

ASPIN MSPIN 
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Original vs. ASPIN vs. MSPIN 
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1D BVP example 
 [Lanzkron, Rose & Wilkes, 1997] 
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DAE example 
[PETSc, ex28] 
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3-field PDE example 
[PETSc, ex19] 

MSPIN 
splitting 

G, H  systems 
are both linear 
among their 
own unknowns 
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MSPIN: 3-field PDE example 
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MSPIN: 3-field PDE example 

Linear 
subsystems 
solved with 
hypre’s 
BoomerAMG 
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MSPIN: 3-field PDE example 
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Comment  
•  Newton was not doomed before nonlinear preconditioning 
•  Other relevant globalization methods for the driven cavity  

– mesh continuation: approach the problem on the mesh of desired 
resolution by initial guesses recursively built up from easier Newton 
problems on coarser meshes 

–  Reynolds number continuation: approach the problem at the desired 
Reynolds by initial guesses projected by Davidenko’s method from 
the easier low Reynolds limit 

–  pseudo-transient continuation: approach the steady state by a 
transient approach in the vorticity equation, with implicit time step 
eventually approaching infinity 

•  These may also be combined with nonlinear preconditioning 
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Caveat  

•  Newton is ever more art than science… 
•  Picking  u, v, … and corresponding  G, H, …  is not trivial 
•  Different groupings and different orderings can change 

the quality of the preconditioning – even dramatically 
–  generally good to order the linear subsystem (or the “least” 

nonlinear subsystems) first 
–  generally good to try to keep the “most” nonlinear subsystems as 

small as possible and order last 
–  sometimes splitting the systems by component yields equations 

that are linear among their own local unknowns 
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Future work 
•  Applications: gain more experience on problems difficult to 

converge globally any other way 
•  Improvements: the modified Jacobian is known only in the 

form of matvecs and is therefore a challenge to precondition 
further 
–  should inner preconditioning therefore include a spatially hierarchical 

component? 
•  Theory: try to come up with measures of nonlinearity for 

different subsystems  
–  will vary with arguments 
–  cannot deduce from form of equations alone 

•  Software: create high performance implementations 
–  exploit the permitted asynchrony of inner Newton subproblems, with 

work-stealing 
–  nest domain-split ASPIN inside of field-split MSPIN 
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Thank you! 


