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The problem

* A nonlinear system F(u)=0 may
be “stiff,” in the sense that the iso-
contours of the merit function,
e.g., /(1) =||F(u)||?, are far from
hyperellipsoidal, giving a small
local convergence domain

* This may be combined with linear
ill-conditioning, in the sense that
the hyperellipsoids are locally
badly stretched
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Typical causes of nonlinear stiffness

[Cai, K, Young, 2000] : shocks,
reaction zones, boundary
layers, interior layers

(Apug), =0, 0 <z <2
A= A(x) =04+ 0.6(x — 1),

converging-diverging wind tunnel

I
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Figure 1: Mach distribution and the shock location.
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Figure 2: Nonlinear residual history of the inexact Newton’s algorithm for the flow
problem with mesh sizes h = 1/128 and h = 1/256.
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Figure 3: Nonlinear residual history of the additive Schwarz preconditioned inexact
Newton’s algorithm for the flow problem with mesh sizes h = 1/128 and h = 1/256.
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* Newton method for a nonlinear system solves F(u) =0
— computes a global Jacobian matrix, and a global Newton step by

solving the global linear system

* Nonlinearly preconditioned Newton solves F(u) =0

— implemented Jacobian-free through set of local problems on
subsets of the original global nonlinear system

— each of the linear systems for local Newton updates has only local
scope and coordination

— still global coordination in outer steps, hopefully many fewer than
required in the original Newton method
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[Lions, 1988] : On the Schwarz Alternating Method. I, 2-subdomain
procedure for monotone nonlinear problems by alternating variational
minimization in each subdomain

[Ca1, Gropp, K & Tidrir1, 1994] : Newton-Krylov-Schwarz Methods in
CFD, a matrix-free method based on global linearization and local
preconditioning

[Ca1 & Dryja, 1994] : Domain decomposition methods for monotone

nonlinear elliptic problems, quadratic convergence proof for Newton,
based on global linearization and local preconditioning

[Dryja & Hackbusch, 1997] : On the nonlinear domain decomposition
method, an additive nonlinear Richardson iteration based on the

solution of local nonlinear problems

[Cai & K, 2002] : Nonlinearly preconditioned inexact Newton algorithms,
matrix-free Newton acceleration of [Dryja & Hackbusch, 1997]
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Find solution u#* of F(u*)=0 from F(u*)=0
— using inexact Newton
— linear systems solved with matrix-free Krylov

— globalized with backtracking line search or trust
region, etc.

F(u)=0 and F(u*)=0 have the same solution
F(w) is easily computable for w in R”
F’(w)v is also easily computable for w, v in R”
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Inexact Newton w/Backtracking

ALGORITHM 1 (INB).
An initial iterate (%) is given. For k = 0,1, 2, ... until convergence:
1. Find an inexact Newton direction d(¥) such that

(1.2) |E@@®) - F'(@®)d® || < gy F ().

2. Determine a step size A(*) using a backtracking linesearch technique based
on the function f(z) = 3|/ F(z)]?.
3. Compute a new approximate solution

(1.3) kD) _ (k) _ (k) g(k)

* loose tolerance on forcing term 7, when INB used as an outer method
* tight tolerance when used as an inner method
* dependence on 7, studied later
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2000: Robustify Newton and improve its efficiency

- Additive Schwarz Preconditioned Inexact Newton (ASPIN)

- interchange order of linearization and decomposition

- spend majority of effort on local problems

- local problems are smaller and better nonlinearly conditioned

- create better nonlinearly conditioned global problem, Jacobian-free

- high concurrency through domain decomposition
2010: Relax global synchronization requirements of Newton

- fewer global synchronizations
- local synchronizations, asynchronous to each other

2015: Further robustify Newton for multicomponent systems

- Multiplicative Schwarz Preconditioned Inexact Newton (MSPIN)
- precondition multiphysics through (sequential) uniphysics solves
- nest ASPIN (on subdomains) inside MSPIN, for reasons above
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ASPIN: nonlinear domain decomposition
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ASPIN: construction through local solves

Concurrent (possibly overlapping) local solves for local
corrections, using existing code

FQZ.(’LL—TQi(U)):O, iZl,...,N

Sum for global residual

F(u) = ZTQ (u), U 0, =0

Finite difference for global Jacobian-vector product
No new code required for F or its Jacobian 7
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ASPIN: 2-component example

(nonoverlapping)
Original system
B K | Glu,v)
F(x)=0, z= v | F(x) = H(uv)

Transformed system

(u, v
F(z) = Flu,v) — _}gl(u,vg — 0

where (1,v) are obtained implicitly by solving independently

G('U,—g,’U) — 07

H(u,v—h) =0
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ASPIN: 2-component example (cont.)

Jacobian of preconditioned system

i ] - (0G\ — T [ 0G OG T
B 9u Gv B (%) : Op Ov
j(“’)v) o ho o 0H\—1 0H O0H
| YU TR i ( 0q ) 1l L ou 0q _

where p = u—g(u,v) and q = v —h(u,v)

Since (p,q) approach (u,v) as the solution converges locally,
the preconditioned Jacobian is locally well approximated by
the readily computable

Hon=[ % o] (5 5] [ ] e

Diagonal blocks are identities, so linear conditioning depends
on coupling strength in the off-diagonals
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ASPIN: 2-component example (cont.)

Operationally, the approximate preconditioned matvec

jx:y

is straightforward, in terms of code for the original problem:

1. Perform the multiplication w = Jz, w = [wy, wa]?.
2. Solve G,y1 = wy and Hyys = wo.
3. Form the result y = [y1, y2|’.

Generalization to 3 or more components is straightforward
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* [Kahou et al., 2007, 2008] : multiplicative generalization of linear
additive Schwarz (Richardson and Krylov-accelerated)

— applied to standard sparse test matrices
— of limited interest due to lack of exploitation of concurrency

° [Ernstetal., 2007] : multiplicative generalization of nonlinear
additive Schwarz (Richardson)
— applied to acoustic-structure interaction (structure being nonlinear)

— remarked: “inexact Newton generalization is future work”

°* [Liu & Keyes, 2015] : multiplicative Schwarz preconditioned
inexact Newton (MSPIN)

— interesting for multicomponent problems, where the number of multiplicative
stages is small

— each stage represents a different component of the physics, for which an
individual solver is presumed available
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Source of today’s talk

SIAM J. Sci. COMPUT. © 2015 Society for Industrial and Applied Mathematics
Vol. 37, No. 3, pp. A1388—-A1409

FIELD-SPLIT PRECONDITIONED INEXACT
NEWTON ALGORITHMS*

LULU LIU' AND DAVID E. KEYES'

Abstract. The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is
presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an
algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence
of systems with unbalanced nonlinearities; however, they have natural complementarity in practice.
MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by
field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for
physically motivated convergence robustness. ASPIN, originally introduced for decompositions into
subdomains, is natural for high concurrency and reduction of global synchronization. We consider
both types of inexact Newton algorithms in the field-split context, and we augment the classical
convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN
can be significantly more robust than Newton methods based on global linearizations, and that
MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems,
such as high Reynolds number Navier—Stokes equations.

Key words. nonlinear equations, nonlinear preconditioning, field splitting, Newton method,
Navier—Stokes equations

AMS subject classifications. 65H10, 656H20, 656N22, 65N55

DOI. 10.1137/140970379
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MSPIN: 2-component example

(nonoverlapping)
Original system
B K | Glu,v)
F(z)=0, z= v F(z) = H(uv)
Transformed system ] )
_ _ | 9(wv) | _
F(z) = F(u,v) = h(u,v) | = 0
where (u,v) are obtained implicitly by solving sequentially
G(U — 9, U) — 07

H(u—g,v—h)=0
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MSPIN: 2-component example (cont.)

Jacobian of preconditioned system

J (u,v)

- 0G
Op
oOH

| Op

o0H
dq

oG
Op
OH
Op

oG
ov
OH
dq

where p = u—g(u,v) and ¢ = v—h(u,v)

As before, since (p,q) approaches (u,v) as the solution
converges locally, the preconditioned Jacobian is locally well
approximated by the readily computable

G, -
H, H,

G, G,

j(uav) — [ Hp H,
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MSPIN: 2-component example (cont.)

Operationally, the approximate preconditioned matvec

Jr=1y
is again straightforward, in terms of code for the original
problem:

Perform the multiplication w = Jz, w = [w1, ws]’.
Let 29 = wq and solve Gz = w;.
Perform 29 = 29 — Hy2; and set y; = 2.
Solve H,ys = 2.

Form the result y = [y1,y2]” .

Al .

Generalization to 3 or more components is block triangular, as
expected
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Nonlinear preconditioning: theory

Assume original Jacobian J= F’(u) is continuous in a
neighborhood D of the exact solution ©#* and nonsingular at
Z/l*

[Dryja & Hackbusch, 1997] : the original subproblems for 7,
are all uniquely solvable in a neighborhood of ™ in D

[Dryja & Hackbusch, 1997] : the matrix X,(J;")J , where J,
represents the Jacobian of the i subdomain extended to the full
space, and J;© denotes its generalized inverse, is nonsingular in
a neighborhood of u™* in D

Remark : if F(u) = b - Au , this is just the additive Schwarz
preconditioned operator, X.(4,)4

The Jacobian of the ASPIN modified system 7= F’(u)
approaches X.(J")J as u approaches u*
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Nonlinear preconditioning: theory

[Cai & K, 2002] : F(u) and ASPIN’s ‘F(u) are equivalent in that
they possess the same solution in a neighborhood of D

|An, 2005] : ASPIN local convergence guaranteed

— superlinear if forcing term in inexact Newton approaches 0

— quadratic if forcing term approaches 0 like O(||F(®)|))

[Liu & K, 2014] : F(u) and MSPIN’s F(u) are equivalent in
that they possess the same solution in a neighborhood of D
[Liu & K, 2015] : MSPIN local convergence guaranteed

— superlinear if forcing term in inexact Newton approaches 0

— quadratic if forcing term approaches 0 like O(||F(®)|))
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Nonlinear residuals
o
o

—Au— — =0, reservoir

—Avt+ oo =0, (SPE10)

Examples

model

[ V. (MK Vpy) =

Re=1.0e3 ] 1 qt +V. (/\nKVpc) -V (()\npn + )‘wpw)Kg)’

Newton convergence

Nonlinear residuals
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ASPIN: PETSc implementation

petsc-3.6.0 2015-06-09
Report Typos and Errors

SNESASPIN

Helper SNES type for Additive-Schwarz Preconditioned Inexact Newton

Options Database

-npc_snes_ - options prefix of the nonlinear subdomain solver (must be of type NASM)
-npc_sub_snes_- options prefix of the subdomain nonlinear solves

-npc_sub_Kksp_ - options prefix of the subdomain Krylov solver

-npc_sub_pc_ - options prefix of the subdomain preconditioner

Notes: This routine sets up an instance of NETWONLS with nonlinear left preconditioning. It differs from other
similar functionality in SNES as it creates a linear shell matrix that corresponds to the product

\sum_{i=0}"{N_b}J_b({X*b_{converged} N {-1}J(X + \sum_{i=0}*{N_b}(X*b_{converged} - X b))

which is the ASPIN preconditioned matrix. Similar solvers may be constructed by having matrix-free differencing of nonlinear solves
per linear iteration, but this is far more efficient when subdomain sparse-direct preconditioner factorizations are reused on each
application of J_bA{-1}.

See Also

SNESCreate(), SNES, SNESSetType(), SNESNEWTONLS, SNESNASM, SNESGetNPC(), SNESGetNPCSide()

Level:intermediate
Location:src/snes/impls/nasm/aspin.c
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2-unknown algebraic example [Hwang, 2004]

For ease of manipulation and visualization, consider

Fl(CUl,CUg) = (.Cl?l — J?'g + ].)3
FQ(ZEl,ZEQ) — 2331 + 31132 — 9.

3
— L9,

For ASPIN (Jacobi-like)
Fi(z1— 67, 29) =0

—
F2(£U1,£U2 — 52']) =0

For MSPIN (Gauss-Seidel-like)

J 3
51 (501,332) =T — Ty + 1 — 9,

gx+x—§
g7t g

5g($1,$2) —

Fi(z — 5fs,x2) =0
F2(£C1 — I,IBQ —55;5) =0

—

GS 3
51 (331,332) = I1 — 9 +1 - L2,

2 5 7
657 (21, 9) = —x5 + 9 — —.

3 3 3
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Original vs. ASPIN vs. MSPIN

Fi(x1,22) = (1 — :c‘;’ + 1)3 — :1:‘3,
Fg(il?l,ivg) — 2331 + 3332 — 9.

One ninth-order, one linear, both equations couple unknowns

517(3317372) = I —leg—{—]_ — X9, All have
2 5 same root,
5J L1,X2) = =1 + ro — —. namely
2( ) ) 3 3 0

One third-order, one linear, both equations couple unknowns

69 (21, 9) = 21 — x5 + 1 — o,
2 5 7

657 (x1, T2) = gxg + 3%2 3

Both third-order, one equation decouples
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Original

Contours of o

log( [|F(x;x)ll + 1)
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Original vs. ASPIN vs. MSPIN

TABLE 1
The number of nonlinear iterations. The outer global tolerance is 10~8, and the inner compo-
nent tolerances are both 1073,

Initial guess xzg INB ASPIN MSPIN
zo = (0,0)% 11 7 6
zo = (0,2)T 10 7 5
zo = (2,0)T 1 8 6
ro = (2,2)T 11 7 5
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1D BVP example

z € (0,1),

u(0) =0, u(1)

u(z) = 103e¢

x—0.5\2
0.01

[Lanzkron, Rose & Wilkes, 1997]

D= 4w+ (4 x 10%(z - 0.5)% — 2 x 10

Ju —10%~
0

right 7€ unknowns in G.
No. points | Glogy | Gright | 1ts- INB | Its. ASPIN | Its. MSPIN
100 48 53 5 2 1
500 236 265 5 2 2
1000 471 530 6 2 1
5000 2351 2650 5 2 2

Comparison of the number of nonlinear iterations for different methods in the rightmost three
columns. “No. points” indicates the number of grid points used to discretize the ODE. The points
between Gt and G
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DAE example
[PETSc, ex28]

(5.4) —(vtg)e + Au® =1 on (0,1), subject to u(0) =0, u(l) =1,
1
(5.5) exp(v—1) +v=— g —
14+u 1+u?

Global mnonlinear and linear iterations wusing globalized INB, ASPIN and MSPIN.

— —10 _ —8 _ -3
€global—nonlinear—rtol — 10 » €global—linear—rtol — 10™°, €sub—nonlinear—rtol = 107°. %7

indicates that linear iterations are not available, since the nmonlinear methods stagnate at the line
search.

Number of PIN iterations
Methods A=0 A =100 A = 1000 A = 3000 A = 5000
INB 6 6 15 - 9
ASPIN 6 - - - -
MSPIN 5 5 5 5 5
Average number of GMRES iterations per PIN
INB 12 18 14 * 7
ASPIN 21 * * * *
MSPIN 10 9 8 8 7
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3-field PDE example
[PETSc, ex19]

Ow __
( —Au—a—y—O,
(5.6) { —Av+ 22 =0,
| —gAw+ug? +vge =0

Here u = 1,v = 0 on the top boundary and v = 0,v = 0 on the other boundaries.
The boundary condition on w is given by its definition:

ou  Ov
_Au — g—w = 0,
G : Y G H ¢
MSPIN ~Av+ %2 =, , H systems
litti ’ are both linear
P among their
H: -2 Aw + ua_“’ n va_‘*’ _o Own unknowns
Re 833 ay
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MSPIN: 3-field PDE example

Global nonlinear and linear iterations using globalized INB, ASPIN, and MSPIN on dif-

ferent mesh sizes. The initial guess is zero for u, v, and w.

—6
€global—linear—rtol — 10 ’

€global—nonlinear—rtol = 10~10, The finite difference step size for the matriz-free Jacobian applica-

tions is 1078, «

fail to converge after 10,000 steps.

*xx” indicates that nonlinear iterations are not available, because linear iterations

64 X 64 mesh

Number of PIN iterations

Methods

Re =10 Re = 100

Re = 1000

INB
ASPIN
MSPIN

Ut © O

Average number of GMRES iterations per PIN

INB
ASPIN
MSPIN

26

128 x 128 mesh

=

Number of PIN iterations

Methods

Re = 10 Re = 100

Re =.,1000

INB
ASPIN
MSPIN

3 5
4 9
4 5

kX%

Average number of GMRES iteratians per PIN

INB
ASPIN
MSPIN

14
e 256 X 256 mesh

(D:Q1E

Number of PIN iterations

Methods

Re =10 Re = 100

Re =.,1000

INB
ASPIN
MSPIN

3 5
4 10
4 6

Average number of GMRES iteratians per PIN

INB
ASPIN
MSPIN

93 200
47
15 24
e

S )Gai
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MSPIN: 3-field PDE example

1024 x 1024 mesh

~ ASPIN
H o~ MSPIN
T — N I 0 e s ot R 1 Linear
O RN 5
: | subsystems
é “w (F solved with
g 100 \\\\ ______ ST TO R hypreﬂs
TN BoomerAMG
\\\
107
10’ 10° o

Number of processors

Fic. 5.
Reynolds number 1000.

_ —8 _ -3 _ -3
€global—nonlinear—rtol — 107°, €sub—rtot = 1077, and €jac—rtor = 1077,

Strong scaling for the driven cavity flow problem on a 1024 X 1024 mesh at
The initial guess is still zero for u,v,w. €giobal—linear—rtol = 103,

€sub—rtol denotes the

relative tolerance for the subproblems (which are linear in this example), and we specify €joc—rtol
as the relative tolerance for the linear problems in (2.13) and (2.29). The finite difference step size
for the matriz-free Jacobian applications is 10~8. Ezecution time for ASPIN using 512 processors
is not shown since it fails to converge on this mesh and this Reynolds number from a zero initial

guess.
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MSPIN: 3-field PDE example

Ezecution times for strong scaling of the lid-driven cavity for ASPIN and MSPIN on a 256 X 256
mesh at Reynolds number 1000, for tight and loose relative convergence tolerances on the subprob-
lems and global preconditioner linear systems solutions. The initial guess is zero for u, v, and w.
€global—linear—rtol = 10_6; €global—nonlinear—rtol — 1078, €sub—rtol denotes the relative tolerance
for the subproblems (which are linear in this ezample), and we specify € joc—rtor @S the relative tol-
erance for the linear problems in (2.13) and (2.29). The finite difference step size for the matriz-free
Jacobian applications is 1078, ¢ Ny ” indicates the number of processors, which does not have to be
square. Performance for INB is not shown since it fails to converge on this mesh and this Reynolds
number from a zero initial guess.

Execution time (s)

256 X 256 mesh
—rtor = 1073 €sub—rtol = 1073 €sub—rtor = 1076 €sub—rtor = 107°
Methods N. €sub—rtol sub—rtol sub—rtol sub—rtol
P €Jac—rtol = 10~3 €Jac—rtol = 10-° €EJac—rtol = 10~3 €Jac—rtol = 10—°
4 2363.98 3273.88 2194.43 3219.34
16 687.68 943.91 654.32 976.95
ASPIN 32 2 6 395.26 5
64 272.4 412.27 276.03 405.9
4 175.31 245.59 199.64 248.18
16 57.04 74.06 56.74 74.48
MSPIN 32 32.17 45.86 34.55 46.33
64 C 22310 C 31640 C 31790
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* Newton was not doomed before nonlinear preconditioning

* Other relevant globalization methods for the driven cavity

— mesh continuation: approach the problem on the mesh of desired
resolution by initial guesses recursively built up from easier Newton
problems on coarser meshes

— Reynolds number continuation: approach the problem at the desired
Reynolds by initial guesses projected by Davidenko’s method from
the easier low Reynolds limit

— pseudo-transient continuation: approach the steady state by a

transient approach in the vorticity equation, with implicit time step
eventually approaching infinity

®* These may also be combined with nonlinear preconditioning
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* Newton is ever more art than science...
* Picking u, v, ... and corresponding G, f, ... is not trivial

* Different groupings and different orderings can change
the quality of the preconditioning — even dramatically

— generally good to order the linear subsystem (or the “least”
nonlinear subsystems) first

— generally good to try to keep the “most” nonlinear subsystems as
small as possible and order last

— sometimes splitting the systems by component yields equations
that are linear among their own local unknowns
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Applications: gain more experience on problems difficult to
converge globally any other way

Improvements: the modified Jacobian is known only in the
form of matvecs and is therefore a challenge to precondition
further

— should inner preconditioning therefore include a spatially hierarchical
component?

Theory: try to come up with measures of nonlinearity for
different subsystems

— will vary with arguments

— cannot deduce from form of equations alone

Software: create high performance implementations

— exploit the permitted asynchrony of inner Newton subproblems, with
work-stealing

— nest domain-split ASPIN inside of field-split MSPIN
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Thank you!
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