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1. Plane strain problem

2. Volume Locking, which is an unpreferable

phenomenon.

3. Two kinds of Hybrid DGFEMs (Discontinuous

Galerkin Finite Element Methods) are introduced.

● One of them is locking free, and the other one is

not.

4. These facts are shown theoretically and numerically.

5. Conclusion
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● u = [u1, u2]
T : two-dimensional displacement of the

elastic body.

● The strain tensor ε(u) = [εij(u)]ij is given by

εij(u) =
1
2
(∂ui/∂xj + ∂uj/∂xi) (1 ≤ i, j ≤ 2).

● We use an underline (resp. double underlines) to

denote two dimensional vector (resp. 2× 2 matrix)

valued functions, operators, and their associated

spaces.
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● The isotropic linear elastic stress-strain relation is

written by

σ(u) = 2µ ε(u) + λ(div u) δ,

where λ and µ are Lamé parameters,

δ :=

[
1 0
0 1

]
.

● We assume λ > 0 and µ = 1 in this talk.
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We consider the following plane strain problem:

{
− div σ(u) = f in Ω,

u = 0 on ∂Ω,

f = [f1, f2]
T is a distributed external body force per unit

in-plane area.
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● When the Lamé constant λ (> 0) is large, the

accuracy of FE solutions obtained by using coarse

meshes is bad. So we need to use sufficiently fine

meshes to obtain satisfactory FE solutions.

● Babuška–Suri(1992) presented a mathematical

definition of the volume locking. Our theoretical

analysis will be based on it.

● It is well known that P1 conforming FEM causes a

volume locking phenomenon.
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● Domain Ω := (0, 1)× (0, 1).
● We determine the exact solution u by

ψ(x) := x2(x− 1)2,

Ψ(x1, x2) := −
1

2
ψ(x1)ψ(x2) (stream function),

u := rotΨ.

● The exact solution is independent of λ and satisfies

div u = 0.

● This test problem is presented in Bercovier–Livne

(1979) and Soon–Cockburn–Stolarski (2009).
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● Let us solve the test problem by P1 conforming FEM.

● We use 4 meshes which are obtained by dividing

each side of Ω into 2j × 10 (j = 0, 1, . . . , 3)
equi-length line segments. To make these meshes,

we used Gmsh [15].
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● High-order FE

✦ Babuška–Suri, 1992

● Mixed methods

✦ Arnold–Brezzi–Douglas, 1984
✦ Stenberg, 1988
✦ Jeon–Sheen, 2013

● Non-conforming FE

✦ Brenner–Sung, 1992

● DG

✦ Hansbo–Larson, 2002 (not Hybirid type)
✦ Wihler, 2004 (not Hybirid type)
✦ Soon–Cockburn–Stolarski, 2009 (a hybrid type different

from ours)
✦ Di Pietro–Nicaise, 2013 (not Hybrid type)
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● We consider a hybrid version of SIP (Symmetric

Interior Penalty) method, which is called Hybrid

DGFEM in this talk.

● The SIP method was first investigated by Wheeler

(1978) and Arnold (1982).

● The hybrid version has been investigated by the

following authors:

✦ Laplace eq.: Oikawa–Kikuchi (2010)

✦ Linear elasticity eq.: Kikuchi–Ishii–Oikawa

(2009)

✦ Convection diffusion eq.: Oikawa (2014)

✦ Stokes eq.: Egger–Waluga (2013)

✦ Rellich-type discrete compactness: Kikuchi

(2012)
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● T h: a triangulation of Ω ⊂ R
2.

● We assume that a family of triangulations {T h}0<h≤h̄

is regular in the sense of Ciarlet.

● Eh: the set of all edges of T h.

● Γh :=
⋃

e∈Eh

e, which is called skeleton.
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● Let u(∈ Hs(Ω)) (s > 3/2) be the exact solution of the

plane strain problem.

● We denote the trace on the skeleton Γh of u by û,

i.e., û := u|Γh .

● We call û Numerical Trace (NT) in this talk.

● In Hybrid version, we treat u and û as unknowns.

● We approximate u and û by piecewise linear

functions, i.e., we use the following FE spaces:

Uh :=
∏

K∈T h

P1(K)

(piecewise linear functions on Ω),

Ûh :=
∏

e∈Eh

P1(e)

(piecewise linear functions on Γh).
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Then u := {u, û} satisfies the following weak form

ahη(u, v) =
(
f, v

)
Ω

for all v := {v, v̂} ∈ Hs(T h)× L2
D(Γ

h).

● broken Sobolev space: ∀s > 0,

Hs(T h) :=
{
v ∈ L2(Ω); v|K ∈ Hs(K), ∀K ∈ T h

}
.

● (·, ·)Ω: the standard inner product of L2(Ω).
● L2

D(Γ
h) :=

{
v̂ ∈ L2(Γh) | v̂ = 0 on ∂Ω

}
.

● We will define the bilinear form ahη(·, ·) on the next

sheet.
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ahη(u, v)

:=
∑

K∈T h

[
2µ

(
ε(u), ε(v)

)
K
+ λ (div u, div v)K

+
〈
σ(u)n, v̂ − v

〉
∂K︸ ︷︷ ︸

Consistency term

+
〈
û− u, σ(v)n

〉
∂K︸ ︷︷ ︸

Symmetry term

]

+ Lh(u, v)︸ ︷︷ ︸
Lifting term

+ ηIh(u, v)︸ ︷︷ ︸
Penalty term

● (·, ·)K and 〈·, ·〉∂K are the standard inner products of

L2(K) and L2(∂K), respectively.
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For each K ∈ T h, a local lifting operator:

RK
i : L2(∂K) −→ P0(K) (i = 1, 2)

is defined by

(RK
i g, ϕ)K = 〈g, ϕni〉∂K ∀g ∈ L2(∂K), ∀ϕ ∈ P0(K).

● P0(K): the set of constant functions on K.

● n = [n1, n2]
T : the outward unit normal n on ∂K.

● Lifting operator RK
i corresponds to the differential

operator ∂/∂xi.
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The lifting operators corresponding to div, εij, and ε are

defined as follows: for g = [g1, g2]
T ∈ L2(∂K),

RK
divg :=

2∑

i=1

RK
i gi,

RK
εij
g :=

1

2

(
RK

i gj +RK
j gi

)
(1 ≤ i, j ≤ 2),

RK
ε (g) :=

[
RK

εij
g
]
1≤i, j≤2

.
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We finally define

Lh(u, v)

:=
∑

K∈T h

[
2µ

(
RK

ε (û− u), RK
ε (v̂ − v)

)

K

+λ
(
RK

div(û− u), RK
div(v̂ − v)

)
K

]
.
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Bilinear form Ih is defined as follows:

∀u = {u, û}, v = {v, v̂} ∈ H1(T h)× L2(Γh),

Ih(u, v) :=
∑

K∈T h

∑

e∈EK

1

|e|
〈û− u, v̂ − v〉e .

● EK : the set of all edges of K.

● |e|: the length of an edge e.
● 〈·, ·〉e: the standard inner product on L2(e).
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We also consider another bilinear form bhη(·, ·) obtained

by subtracting the lifting term from ahη :

bhη(u, v) := ahη(u, v)− Lh(u, v).
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We also consider another bilinear form bhη(·, ·) obtained

by subtracting the lifting term from ahη :

bhη(u, v) := ahη(u, v)− Lh(u, v).

bhη(u, v) =
∑

K∈T h

[
2µ

(
ε(u), ε(v)

)
K
+ λ (div u, div v)K

+
〈
σ(u)n, v̂ − v

〉
∂K︸ ︷︷ ︸

Consistency term

+
〈
û− u, σ(v)n

〉
∂K︸ ︷︷ ︸

Symmetry term

]

+ ηIh(u, v)︸ ︷︷ ︸
Penalty term

.
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Now let us consider a time-dependent elastic wave

equation and boundary conditions:

∂2u

∂t2
− div σ(u) = f in Ω,

u = 0 on ∂Ω.
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Its semi-discrete problem can be represented as a

differential-algebraic equation:

d2

dt2

[
M11 O
O O

] [
u(t)
û(t)

]
+

[
A11 A12

AT
12 A22

] [
u(t)
û(t)

]

=

[
f(t)
0

]
.

Deleting û, we can reduce this equation to

d2

dt2
M11u(t) +

(
A11 − A12A

−1
22 A

T
12

)
u(t) = f(t).
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● To numerically solve

d2

dt2
M11u(t) +

(
A11 − A12A

−1
22 A

T
12

)
u(t) = f(t),

we need to compute the following matrix–vector

product: A−1
22 ~v.

● If we exclude the lifting term and if we properly

choose a basis of P1(e)
2 for each e ∈ Eh, then A22

can be the unit matrix, and hence we do not need to

compute A−1
22 ~v.

● If we add the lifting term, then A22 is NOT a block

diagonal matrix, and hence we have to compute

A−1
22 ~v with much effort.

● NOTE: For steady problems, we can also use

another Schur complement matrix: A22 −AT
12A

−1
11 A12.

A11 can be the unit matrix.
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We consider two types of Hybrid DGFEMs:

1. DG with Lifting term (DG-wL):

find uh =
{
uh, ûh

}
∈ V h such that

ahη(u
h, vh) = (f, vh)Ω ∀vh ∈ V h.

2. DG without Lifting term (DG-woL):

find uh =
{
uh, ûh

}
∈ V h such that

bhη(u
h, vh) = (f, vh)Ω ∀vh ∈ V h.

● V̂ h := Ûh ∩ L2
D(Γ

h) and V h := Uh × V̂
h
.

● L2
D(Γ

h) :=
{
v̂ ∈ L2(Γh) | v̂ = 0 on ∂Ω

}
.
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Our goal is to show the following two facts theoretically

and numerically:

1. DG-wL is locking free.

2. DG-woL can not prevent locking phenomena.
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Proposition 1 ∃C > 0 such that ∀η > 0, ∀λ > 0,

∀h ∈ (0, h̄], and ∀vh ∈ V h,

ahη(v
h, vh) ≥ Cmin{1, η}‖vh‖2

V
h ,

where C is independent of λ, h, η, and vh.

Proposition 2 ∃C > 0 such that ∀η > η0 := 2Cr(λ+ 2µ),
∀λ > 0, ∀h ∈ (0, h̄], and ∀vh ∈ V h,

bhη(v
h, vh) ≥ Cmin{1, η}‖vh‖2

V
h ,

where C is independent of λ, h, η, and vh, and Cr will be

given below.
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● If we use ahη , we take an arbitrary η.

● If we use bhη and if we adopt the sufficient condition:

η > η0 = 2Cr(λ+ 2µ), then we have to take η = O(λ)
as λ −→ ∞.

● Is it reasonable to use the sufficient condition in

practical computations?

● We numerically examine how well η0 estimates the

exact lower bound ηhLB, which is given as follows:

ηhLB = inf{η > 0 | bhη is coercive}.
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Here a norm of V h is defined as follows: ∀ {v, v̂} ∈ V h,

‖{v, v̂}‖2
V

h

:=
∑

K∈T h

{
|v|2H1(K) +

∑

e∈EK

[
1

|e|
|v̂ − v|2e + |e||∇v|2e

]}
.
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The constant Cr in the definition of η0 := 2Cr(λ+ 2µ):
appears in the following estimate.

Lemma 1 There exists a positive constant Cr such that

for all h ∈ (0, h̄], for all K ∈ T h, and for all g ∈
∏

e∈EK

Pk(e),

∥∥RK
i g

∥∥2

K
≤ Cr

∑

e∈EK

1

|e|
|g|2e (i = 1, 2),

where Cr is independent of h, K, and g.
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● If K is an isosceles right triangle, we can find that

Cr = 4.

● In numerical computations below, we use

triangulations of Friedrichs–Keller (FK) type as

shown in the figure below, whose elements are all

isosceles right triangles.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1



Exact Lower Bound of ηhLB

Introduction

Hybrid DGFEMs

Coerciveness

❖ Coerciveness of
ah
η and bhη

❖ Lower bound η0

❖ Exact Lower
Bound of ηh

LB

❖ Minimum
eigenvalue of Bh

η

❖ Comparison
between η0 and

ηh
LB

Theoretical Analysis

Numerical Examples

Conclusion

July 8, 2015 DD23 – 24 / 41

To numerically seek the exact lower bound ηhLB, we

compute the minimum eigenvalue of the matrix Bh
η

defined by

(
Bh

η~u
h, ~vh

)
Rn = bhη(u

h, vh) ∀uh, vh ∈ V h,

where we identify V h with R
n (n := dimV h), and

correspondingly vh ∈ V h with ~vh ∈ R
n.
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We plot η0 and ηhLB for λ = 10i (i = 0, 1, . . . , 4) in the

figures below, where the red line displays η0 and the

green one ηhLB.
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We plot η0 and ηhLB for λ = 10i (i = 0, 1, . . . , 4) in the

figures below, where the red line displays η0 and the

green one ηhLB.
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We plot η0 and ηhLB for λ = 10i (i = 0, 1, . . . , 4) in the

figures below, where the red line displays η0 and the

green one ηhLB.
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λ 100 101 102 103 104

η0 = 8(λ+ 2µ) 24.00 96.00 816.0 8016 80016

ηhLB (h = 1/10) 18.78 89.69 805.6 7969 79625

ηhLB (h = 1/20) 18.86 89.87 807.2 7976 79703

ηhLB (h = 1/40) 18.89 89.96 808.8 7992 79859

● We can observe that η0 is a good estimation of ηhLB.

● Hence we MUST take η = O(λ) in DG-woL as

λ −→ ∞.
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● Here we note that the solution of DG(-wL or -woL)

uh
η converges to the solution of the conforming FEM

uhFEM as η −→ ∞, that is,

‖uh
η − uh

FEM‖V h = O(η−1/2) (η −→ ∞).

● This suggests that if we take η = O(λ) as λ −→ ∞,

then locking phenomena may occur, because P1

conforming FEM causes locking phenemena.

● We will show this fact theoretically and numerically

in what follows.
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Theorem 1 Assume that λ > 0 and η ∈ [η1, η2] with

0 < η1 < η2. Let u ∈ H1
0(Ω)

2 be the solution of the plane

strain problem. Assume that u ∈ H2(Ω). Further let

û := u|Γh . Let uh ∈ V h be the solution of DG-wL. Then

we have

‖u− uh‖
V

h ≤ Ch‖u‖2,Ω,

where C is a positive constant independent of λ > 0, η,

h, and u.
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● This can be proved by a well-known method, which

is also used in Hansbo–Larson (2002), Wihler

(2004), Di Pietro–Nicaise (2013), and so on.

● That is, we reformulate the elasticity problem as a

Stokes problem with nonzero divergence constrain,

and establish a uniform inf-sup condition.

● The uniform inf-sup condition can be established by

the method of proof due to Egger-Waluga (2013).
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We define the so-called locking ratio due to

Babuška–Suri (1992).

● For λ > 0, we define a solution space:

Bλ :=
{
v ∈ H2(Ω) ∩H1

0(Ω) |

‖v‖H2(Ω) + λ‖ div v‖H1(Ω) ≤ 1
}
.

● For every u ∈ Bλ and for every λ > 0, let uh
λ ∈ V h

satisfy

ahη(u
h
λ, v

h) = ahη(u, v
h) ∀vh ∈ V h,

where u := {u, u|Γh}.
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We define the locking ratio L(λ, h) for λ > 0 and

h ∈ (0, h̄],

L(λ, h) :=
supu∈Bλ ‖u− uh

λ‖V h

supu∈Bλ infvh∈V h ‖u− vh‖
V

h

.

Now there exist positive constants C1 and C2 such that

C1h ≤ sup
u∈Bλ

inf
vh∈V h

‖u− vh‖
V

h ≤ C2h ∀h ∈ (0, h̄].

This implies that we may redefine the locking ratio as

follows:

L(λ, h) :=
supu∈Bλ ‖u− uh

λ‖V h

h
(cf. [21, 7]).
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DG-wL is locking free with respect to the solution set Bλ

and the norm ‖ · ‖
V

h in the sense of Babuška-Suri, i.e.,

lim sup
h−→+0

sup
λ>0

L(λ, h) <∞.

Indeed, we see from the a priori error estimate in

Theorem 1 that

‖u− uh‖
V

h

h
≤ C‖u‖2,Ω ≤ C,

where C is a positive constant independent of h and λ.
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In DG-woL, we must take η = O(λ). So we assume

η = cλ, where c is a positive constant.

Let uh
λ ∈ V h satisfy

bhcλ(u
h
λ, v

h) = bhcλ(u, v
h) ∀vh ∈ V h.

We now pose a hypothesis:

(L)
{
vh ∈ V h

c | div vh = 0
}
= {0} ∀h ∈ (0, h̄],

where

V h
c := Uh ∩H1

0(Ω) (P1 conforming FE space).

It is well-known that almost all triangulations satisfy (L)

(see Mercier(1979), Boffi–Brezzi–Fortin(2013)).
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Theorem 2 Assume that a family of triangulations

{T h}0<h≤h̄ satisfies (L). DG-woL with η = cλ (c > 0)
shows locking of order h−1 with respect to the solution

set Bλ and the norm ‖ · ‖
V

h in the sense of

Babuška–Suri, that is,

0 < lim sup
h−→+0

[
h sup

λ>0
L(λ, h)

]
< +∞.

Proof. This is established in a similar way to the way

which Brenner–Scott(2008) used to prove that P1

conforming FEM causes locking phenomena.
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We use the same test problem that we used at the start.

● Domain Ω := (0, 1)× (0, 1).
● We fix Lamé parameter µ = 1.

● We determine the exact solution u by

ψ(x) := x2(x− 1)2,

Ψ(x1, x2) := −
1

2
ψ(x1)ψ(x2) (stream function),

u := rotΨ.

● The exact solution is independent of λ and satisfies

divu = 0.

● This test problem is presented in Bercovier–Livne

(1979) and Soon–Cockburn–Stolarski (2009).
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● We use 4 meshes which are obtained by dividing

each side of Ω into 2j × 10 (j = 0, 1, . . . , 3)
equi-length line segments.

meshes η

DG-wL unstructured 1
DG-woL structured (FK type) η0 ≡ 8(λ+ 2µ)
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● Let u be the exact solution.

● We consider the following solution set:

Bλ := {αu | |α| ≤ 1} .

● Let L(λ, h) be the locking ratio with respect to the

solution set Bλ and the norm ‖ · ‖
V

h .

● As an approximation of supλ>0 L(λ, h), we compute

max
λ∈Λ

L(λ, h)
(
Λ := {10j | j = 0, 1, . . . , 12}

)
.

● We plot these values for DG-wL and DG-woL in the

following figure.
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● DG-wL prevents volume locking phenomena.

Because we can choose a small η in DG-wL.

● On the other hand, when we use DG-woL, we have

to choose η = O(λ) (λ −→ ∞). This choice causes

volume locking phenomena.

● We conclude that the lifting term is important for

avoiding the volume locking in our Hybrid DGFEM

formulation.
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